An interesting feature of type IIB flux compactifications is the natural presence of strongly warped regions or 'throats'. These regions allow for a 5d Randall-Sundrum model interpretation with a large hierarchy between the UV and IR brane. We show that, in the 5d description, the flux stabilization of this hierarchy (or, equivalently, of the brane-to-brane distance) can be understood as an implementation of the GoldbergerWise mechanism. This mechanism relies on the non-trivial bulk profile of the so-called Goldberger-Wise scalar, which in addition has fixed expectation values at the boundaries and thereby stabilizes the size of the 5d interval. The Goldberger-Wise scalar is realized microscopically by the continuously varying flux of the Neveu-Schwarz 2-form potential B 2 on the S 2 cycle in the throat. Its back-reaction on the 5d geometry leads to a significant departure from a pure AdS 5 background. We also find that, for a wide range of parameters, the universal Kähler modulus of the 10d compactification plays the role of a UV-brane field in the equivalent 5d model. It governs the size of a large 4d curvature term localized at the UV brane. We hope that our simple 5d description of the stabilized throat will be useful in various phenomenological and cosmological applications and that refined versions of this construction will be able to account for all relevant details of the 10d model.
A comprehensive review of physics at an linear collider in the energy range of GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.
A Standard Model-like Higgs near 125 GeV in the MSSM requires multi-TeV stop masses, or a near-maximal contribution to its mass from stop mixing. We investigate the maximal mixing scenario, and in particular its prospects for being realized it in potentially realistic GUT models. We work out constraints on the possible GUT-scale soft terms, which we compare with what can be obtained from some well-known mechanisms of SUSY breaking mediation. Finally, we analyze two promising scenarios in detail, namely gaugino mediation and gravity mediation with non-universal Higgs masses.
Abstract:We investigate the stability of the electroweak vacuum for two-Higgs-doublet models with a supersymmetric UV completion. The supersymmetry breaking scale is taken to be of the order of the grand unification scale. We first study the case where all superpartners decouple at this scale. We show that contrary to the Standard Model with one Higgs doublet, matching to the supersymmetric UV completion is possible if the lowscale model contains two Higgs doublets. In this case vacuum stability and experimental constraints point towards low values of tan β 2 and pseudoscalar masses of at least about a TeV. If the higgsino superpartners of the Higgs fields are also kept light, the conclusions are similar and essentially independent of the higgsino mass. Finally, if all gauginos are also given electroweak-scale masses (split supersymmetry with two Higgs doublets), the model cannot be matched to supersymmetry at very high scales when requiring a 125 GeV Higgs. Light neutral and charged higgsinos therefore emerge as a promising signature of a supersymmetric UV completion of the Standard Model at the grand unification scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.