Mean age of air (AoA) measures the mean transit time of air parcels along the Brewer‐Dobson circulation (BDC) starting from their entry into the stratosphere. AoA is determined both by transport along the residual circulation and by two‐way mass exchange (mixing). The relative roles of residual circulation transport and two‐way mixing for AoA, and for projected AoA changes are not well understood. Here effects of mixing on AoA are quantified by contrasting AoA with the transit time of hypothetical transport solely by the residual circulation. Based on climate model simulations, we find additional aging by mixing throughout most of the lower stratosphere, except in the extratropical lowermost stratosphere where mixing reduces AoA. We use a simple Lagrangian model to reconstruct the distribution of AoA in the GCM and to illustrate the effects of mixing at different locations in the stratosphere. Predicted future reduction in AoA associated with an intensified BDC is equally due to faster transport along the residual circulation as well as reduced aging by mixing. A tropical leaky pipe model is used to derive a mixing efficiency, measured by the ratio of the two‐way mixing mass flux and the net (residual) mass flux across the subtropical boundary. The mixing efficiency remains close to constant in a future climate, suggesting that the strength of two‐way mixing is tightly coupled to the strength of the residual circulation in the lower stratosphere. This implies that mixing generally amplifies changes in AoA due to uniform changes in the residual circulation.
The MPI‐ESM1.2 is the latest version of the Max Planck Institute Earth System Model and is the baseline for the Coupled Model Intercomparison Project Phase 6 and current seasonal and decadal climate predictions. This paper evaluates a coupled higher‐resolution version (MPI‐ESM1.2‐HR) in comparison with its lower‐resolved version (MPI‐ESM1.2‐LR). We focus on basic oceanic and atmospheric mean states and selected modes of variability, the El Niño/Southern Oscillation and the North Atlantic Oscillation. The increase in atmospheric resolution in MPI‐ESM1.2‐HR reduces the biases of upper‐level zonal wind and atmospheric jet stream position in the northern extratropics. This results in a decrease of the storm track bias over the northern North Atlantic, for both winter and summer season. The blocking frequency over the European region is improved in summer, and North Atlantic Oscillation and related storm track variations improve in winter. Stable Atlantic meridional overturning circulations are found with magnitudes of ~16 Sv for MPI‐ESM1.2‐HR and ~20 Sv for MPI‐ESM1.2‐LR at 26°N. A strong sea surface temperature bias of ~5°C along with a too zonal North Atlantic current is present in both versions. The sea surface temperature bias in the eastern tropical Atlantic is reduced by ~1°C due to higher‐resolved orography in MPI‐ESM‐HR, and the region of the cold‐tongue bias is reduced in the tropical Pacific. MPI‐ESM1.2‐HR has a well‐balanced radiation budget and its climate sensitivity is explicitly tuned to 3 K. Although the obtained reductions in long‐standing biases are modest, the improvements in atmospheric dynamics make this model well suited for prediction and impact studies.
Climate and weather variability in the North Atlantic region is determined largely by the North Atlantic Oscillation (NAO). The potential for skillful seasonal forecasts of the winter NAO using an ensemble‐based dynamical prediction system has only recently been demonstrated. Here we show that the winter predictability can be significantly improved by refining a dynamical ensemble through subsampling. We enhance prediction skill of surface temperature, precipitation, and sea level pressure over essential parts of the Northern Hemisphere by retaining only the ensemble members whose NAO state is close to a “first guess” NAO prediction based on a statistical analysis of the initial autumn state of the ocean, sea ice, land, and stratosphere. The correlation coefficient between the reforecasted and observation‐based winter NAO is significantly increased from 0.49 to 0.83 over a reforecast period from 1982 to 2016, and from 0.42 to 0.86 for a forecast period from 2001 to 2017. Our novel approach represents a successful and robust alternative to further increasing the ensemble size, and potentially can be used in operational seasonal prediction systems.
[1] The ECHAM6 atmospheric general circulation model is the atmosphere component of the Max Planck Institute Earth System Model (MPI-ESM) that is used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations. As ECHAM6 has its uppermost layer centered at 0.01 hPa in the upper mesosphere, these simulations offer the opportunity to study the middle atmosphere climate change and its relation to the troposphere on the basis of a very comprehensive set of state-of-the-art model simulations. The goals of this paper are (a) to introduce those new features of ECHAM6 particularly relevant for the middle atmosphere, including external forcing data, and (b) to evaluate the simulated middle atmosphere and describe the simulated response to natural and anthropogenic forcings. New features in ECHAM6 with respect to ECHAM5 include a new short-wave radiation scheme, the option to vary spectral irradiance independent of total solar irradiance, and a latitude-dependent gravity-wave source strength. The description of external forcing data focuses on solar irradiance and ozone. Stratospheric temperature trends simulated with the MPI-ESM for the last decades of the 20th century agree well with observations. The future projections depend strongly on the scenario. Under the high emission scenario RCP8.5, simulated temperatures are locally lower by more than 20 K than preindustrial values. Many of the simulated patterns of the responses to natural forcings as provided by solar variability, volcanic aerosols, and El Niño-Southern Oscillation, largely agree with the observations.
[1] Extreme cold spells over Northern Europe during winter are examined in order to address the question to what degree and in which ways stratospheric dynamics may influence the state of the troposphere. The study is based on 500 years of a preindustrial control simulation with a comprehensive global climate model which well resolves the stratosphere, the MPI Earth System Model. Geopotential height anomalies leading to cold air outbreaks leave imprints throughout the atmosphere including the middle and lower stratosphere. A significant connection between tropospheric winter cold spells over Northern Europe and erosion of the stratospheric polar vortex is detected up to 30 hPa. In about 40 percent of the cases, the extreme cold spells are preceded by dynamical disturbances in the stratosphere. The strong warmings associated with the deceleration of the stratospheric jet cause the tropopause height to decrease over high latitudes. The compression of the tropospheric column below favors the development of high pressure anomalies and blocking signatures over polar regions. This in turn leads to the advection of cold air towards Northern Europe and the establishment of a negative annular mode pattern in the troposphere. Anomalies in the residual mean meridional circulation during the stratospheric weak vortex events contribute to the warming of the lower stratosphere, but are not key in the mechanism through which the stratosphere impacts the troposphere.Citation: Tomassini, L., E. P. Gerber, M. P. Baldwin, F. Bunzel, and M. Giorgetta (2012), The role of stratospheretroposphere coupling in the occurrence of extreme winter cold spells over northern Europe, J. Adv. Model. Earth Syst., 4, M00A03,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.