Smartphones have emerged as a popular and frequently used platform for the consumption of multimedia. New display technologies, such as AMOLED, have been recently introduced to smartphones to fulfill the requirements of these multimedia applications. However, as an AMOLED screen's power consumption is determined by the display content, such applications are often limited by the battery life of the device they are running on, inspiring many researches to develop new power management schemes. In this work, we evaluate the power consumption of several applications on a series of Samsung smartphones and take a deep look into AMOLED's power consumption and its relative contributions for multimedia apps. We improve AMOLED power analysis by considering the dynamic factors in displaying, and analyze the individual factors affecting power consumption when streaming video, playing a video game, and recording video via a device's built-in camera. Our detailed measurements refine the power analysis of smartphones and reveal some interesting perspectives regarding the power consumption of AMOLED displays in multimedia applications.
This paper proposes an analytical power consumption model for H.264/AVC video decoding using hardware (HW) accelerator on popular mobile platforms. Our proposed model is expressed as the product of the power functions of video spatial resolution (i.e., frame size) and temporal resolution (i.e., frame rate). We have demonstrated that the same analytical model is applicable to different platforms. Model parameters are fixed for a specific platform. This indicates that HW accelerated video decoding is independent of the video content. Simulation results show the high accuracy for video decoding power prediction using proposed model, with the maximum relative prediction error less than 10%. Together with the video bit rate and perceptual quality models published in separated works, we propose to solve the power-rate optimized mobile video streaming problem, so as to maximum the video quality given the limited access network bandwidth and battery life for mobile devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.