Grammatical categories, such as noun and verb, are the building blocks of syntactic structure and the components that govern the grammatical patterns of language. However, in many languages words are not explicitly marked with their category information, hence a critical part of acquiring a language is categorizing the words. Computational analyses of child-directed speech have shown that distributional information—information about how words pattern with one another in sentences—could be a useful source of initial category information. Yet questions remain as to whether learners use this kind of information, and if so, what kinds of distributional patterns facilitate categorization. In this paper we investigated how adults exposed to an artificial language use distributional information to categorize words. We compared training situations in which target words occurred in frames (i.e., surrounded by two words that frequently co-occur) against situations in which target words occurred in simpler bigram contexts (where an immediately adjacent word provides the context for categorization). We found that learners categorized words together when they occurred in similar frame contexts, but not when they occurred in similar bigram contexts. These findings are particularly relevant because they accord with computational investigations showing that frame contexts provide accurate category information cross-linguistically. We discuss these findings in the context of prior research on distribution-based categorization and the broader implications for the role of distributional categorization in language acquisition.
Due to the hierarchical organization of natural languages, words that are syntactically related are not always linearly adjacent. For example, the subject and verb in the child always runs agree in person and number, although they are not adjacent in the sequences of words.Since such dependencies are indicative of abstact linguistc structure, it is of significant theoretical interest how these relationships are acquired by language learners. Most experiments that investigate non-adjacent dependency (NAD) learning have used artificial languages in which the to-be-learned dependencies are isolated, by presenting the minimal sequences that contain the dependent elements. However, dependencies in natural language are not typically isolated in this way. We report the first demonstration to our knowledge of successful learning of embedded NADs, in which silences do not mark dependency boundaries. Subjects heard passages of English with a predictable structure, interspersed with passages of the artificial language. The English sentences were designed to induce boundaries in the artificial languages. In Experiment 1 & 3 the artificial NADs were contained within the induced boundaries and subjects learned them, whereas in Experiment 2 & 4, the NADs crossed the induced boundaries and subjects did not learn them. We take this as evidence that sentential structure was "carried over" from the English sentences and used to organize the artificial language. This approach provides several new insights into the basic mechanisms of NAD learning in particular and statistical learning in general.Keywords: Language acquisition; Bracketing; Grammatical Entrainment; Statistical learning; Non-adjacent dependency TOP-DOWN INFLUENCES ON DEPENDENCY LEARNING 3Due to the hierarchical organization of the syntax of natural languages, lexical items (and morphemes) that are syntactically related are not always linearly adjacent. Thus, to acquire the specifics of the hierarchical grammar, learners must be able to track both adjacent and nonadjacent dependencies in a linear sequence of words. For example, in the child runs, the third person singular subject, child, and the agreeing inflected verb, runs, are linearly adjacent; however, they are non-adjacent in the child always runs. For language learners just beginning to learn their language's syntax, evidence about which elements are related in grammatical processes could provide extremely useful information for further grammatical learning. This kind of information is not only beneficial for theories that view language acquisition as a largely domain-general learning problem, but also for theories in which learners have innate domainspecific constraints on representing and processing language. Therefore, an important question in language acquisition research is how learners detect adjacent and non-adjacent grammatical dependencies, as doing so could help learners understand how their language is structured.There has been considerable interest in investigating learning mechanisms that co...
The structure of natural languages give rise to many dependencies in the linear sequences of words, and within words themselves. Detecting these dependencies is arguably critical for young children in learning the underlying structure of their language. There is considerable evidence that human adults and infants are sensitive to the statistical properties of sequentially adjacent items. However, the conditions under which learners detect nonadjacent dependencies (NADs) appears to be much more limited. This has resulted in proposals that the kinds of learning mechanisms learners deploy in processing adjacent dependencies are fundamentally different from those deployed in learning NADs. Here we challenge this view. In 4 experiments, we show that learning both kinds of dependencies is hindered in conditions when they are embedded in longer sequences of words, and facilitated when they are isolated by silences. We argue that the findings from the present study and prior research is consistent with a theory that similar mechanisms are deployed for adjacent and nonadjacent dependency learning, but that NAD learning is simply computationally more complex. Hence, in some situations NAD learning is only successful when constraining information is provided, but critically, that additional information benefits adjacent dependency learning in similar ways. (PsycINFO Database Record
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.