Quantum communication has been successfully implemented in optical fibres and through free-space. Fibre systems, though capable of fast key and low error rates, are impractical in communicating with destinations without an established fibre link. Free-space quantum channels can overcome such limitations and reach long distances with the advent of satellite-to-ground links. However, turbulence, resulting from local fluctuations in refractive index, becomes a major challenge by adding errors and losses. Recently, an interest in investigating the possibility of underwater quantum channels has arisen. Here, we investigate the effect of turbulence on an underwater quantum channel using twisted photons in outdoor conditions. We study the effect of turbulence on transmitted error rates, and compare different quantum cryptographic protocols in an underwater quantum channel, showing the feasibility of high-dimensional encoding schemes. Our work may open the way for secure high-dimensional quantum communication between submersibles, and provides important input for potential submersibles-to-satellite quantum communication.
Quantum state tomography is both a crucial component in the field of quantum information and computation, and a formidable task that requires an incogitable number of measurement configurations as the system dimension grows. We propose and experimentally carry out an intuitive adaptive compressive tomography scheme, inspired by the traditional compressed-sensing protocol in signal recovery, that tremendously reduces the number of configurations needed to uniquely reconstruct any given quantum state without any additional a priori assumption whatsoever (such as rank information, purity, etc) about the state, apart from its dimension.
Chiral interactions are prevalent in nature, driving a variety of bio-chemical processes. Discerning the two non-superimposable mirror images of a chiral molecule, known as enantiomers, requires interaction with a chiral reagent with known handedness. Circularly polarized light beams are often used as a chiral reagent. Here, we demonstrate efficient chiral sensitivity with linearly polarized helical light beams carrying an orbital angular momentum of ±lh, in which the handedness is defined by the twisted wavefront structure tracing a left-or right-handed corkscrew pattern as it propagates in space. By probing nonlinear optical response, we show that helicity dependent nonlinear absorption occurs even in achiral molecules and can be precisely controlled. We model this effect by considering induced multipole moments in light-matter interactions. Design and control of light-matter interactions with helical light opens new opportunities in chiroptical spectroscopy, light-driven molecular machines, optical switching, and in-situ ultrafast probing of chiral systems and magnetic materials.
We examine the propagation of optical beams possessing different polarization states and spatial modes through the Ottawa River in Canada. A Shack-Hartmann wavefront sensor is used to record the distorted beam's wavefront. The turbulence in the underwater channel is analysed, and associated Zernike coefficients are obtained in real-time. Finally, we explore the feasibility of transmitting polarization states as well as spatial modes through the underwater channel for applications in quantum cryptography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.