Rationale Acute pulmonary oxygen sensing is essential to avoid life-threatening hypoxemia via hypoxic pulmonary vasoconstriction (HPV) which matches perfusion to ventilation. Hypoxia-induced mitochondrial superoxide release has been suggested as critical step in the signaling pathway underlying HPV. However, the identity of the primary oxygen sensor and mechanism of superoxide release in acute hypoxia, as well as its relevance for chronic pulmonary oxygen sensing remains unresolved. Objectives To investigate the role of the pulmonary specific isoform 2 of subunit 4 of mitochondrial complex IV (Cox4i2) and the subsequent mediators superoxide and hydrogen peroxide for pulmonary oxygen sensing and signaling. Methods and Results Isolated ventilated and perfused lungs from Cox4i2−/− mice lacked acute HPV. In parallel, pulmonary arterial smooth muscle cells (PASMCs) from Cox4i2−/− mice showed no hypoxia-induced increase of intracellular calcium. Hypoxia-induced superoxide release which was detected by electron spin resonance spectroscopy in wild type (WT) PASMCs was absent in Cox4i2−/− PASMCs and was dependent on cysteine residues of Cox4i2. HPV could be inhibited by mitochondrial superoxide inhibitors proving functional relevance of superoxide release for HPV. Mitochondrial hyperpolarization, which can promote mitochondrial superoxide release, was detected during acute hypoxia in WT but not Cox4i2−/− PASMCs. Downstream signaling determined by patch clamp measurements showed decreased hypoxia-induced cellular membrane depolarization in Cox4i2−/− PASMCs compared to WT PASMCs, which could be normalized by application of hydrogen peroxide. In contrast, chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling were not or only slightly affected by Cox4i2 deficiency, respectively. Conclusion Cox4i2 is essential for acute but not chronic pulmonary oxygen sensing by triggering mitochondrial hyperpolarization and release of mitochondrial superoxide which, after conversion to hydrogen peroxide, contributes to cellular membrane depolarization and HPV. These findings provide a new model for oxygen sensing processes in the lung and possibly also in other organs.
The main protease (M pro ) plays a vital role in proteolytic processing of the polyproteins in the replicative cycle of SARS coronavirus (SARS-CoV). Dimerization of this enzyme has been shown to be indispensable for transcleavage activity. However, the auto-processing mechanism of M pro , i.e. its own release from the polyproteins through autocleavage, remains unclear. This study elucidates the relationship between the N-terminal autocleavage activity and the dimerization of "immature" M pro . Three residues (Arg4, Glu290, and Arg298), which contribute to the active dimer conformation of mature M pro , are selected for mutational analyses. Surprisingly, all three mutants still perform N-terminal autocleavage, while the dimerization of mature protease and transcleavage activity following auto-processing are completely inhibited by the E290R and R298E mutations and partially so by the R4E mutation. Furthermore, the mature E290R mutant can resume N-terminal autocleavage activity when mixed with the "immature" C145A/E290R double mutant whereas its trans-cleavage activity remains absent. Therefore, the N-terminal auto-processing of M pro appears to require only two "immature" monomers approaching one another to form an "intermediate" dimer structure and does not strictly depend on the active dimer conformation existing in mature protease. In conclusion, an auto-release model of M pro from the polyproteins is proposed, which will help understand the auto-processing mechanism and the difference between the autocleavage and trans-cleavage proteolytic activities of SARS-CoV M pro .
The minimal description of a growing cell consists of self-replicating ribosomes translating the cellular proteome. While neglecting all other cellular components, this model provides key insights into the control and limitations of growth rate. It shows, for example, that growth rate is maximized when ribosomes work at full capacity, explains the linear relation between growth rate and the ribosome fraction of the proteome and defines the maximal possible growth rate. This ribosome-centered model also highlights the challenge of coordinating cell growth with related processes such as cell division or nutrient production. Coordination is promoted when ribosomes don't translate at maximal capacity, as it allows escaping strict exponential growth. Recent data support the notion that multiple cellular processes limit growth. In particular, increasing transcriptional demand may be as deleterious as increasing translational demand, depending on growth conditions. Consistent with the idea of trade-off, cells may forgo maximal growth to enable more efficient interprocess coordination and faster adaptation to changing conditions.
The unfolded protein response (UPR) allows cells to adjust secretory pathway capacity according to need. Ire1, the endoplasmic reticulum (ER) stress sensor and central activator of the UPR is conserved from the budding yeast Saccharomyces cerevisiae to humans. Under ER stress conditions, Ire1 clusters into foci that enable optimal UPR activation. To discover factors that affect Ire1 clustering, we performed a high-content screen using a whole-genome yeast mutant library expressing Ire1–mCherry. We imaged the strains following UPR induction and found 154 strains that displayed alterations in Ire1 clustering. The hits were enriched for iron and heme effectors and binding proteins. By performing pharmacological depletion and repletion, we confirmed that iron (Fe3+) affects UPR activation in both yeast and human cells. We suggest that Ire1 clustering propensity depends on membrane composition, which is governed by heme-dependent biosynthesis of sterols. Our findings highlight the diverse cellular functions that feed into the UPR and emphasize the cross-talk between organelles required to concertedly maintain homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.