Efficient interconversion of both classical and quantum information between microwave and optical frequency is an important engineering challenge. The optomechanical approach with gigahertzfrequency mechanical devices has the potential to be extremely efficient due to the large optomechanical response of common materials, and the ability to localize mechanical energy into a micron-scale volume. However, existing demonstrations suffer from some combination of low optical quality factor, low electrical-to-mechanical transduction efficiency, and low optomechanical interaction rate.Here we demonstrate an on-chip piezo-optomechanical transducer that systematically addresses all these challenges to achieve nearly three orders of magnitude improvement in conversion efficiency over previous work. Our modulator demonstrates acousto-optic modulation with Vπ = 0.02 V. We show bidirectional conversion efficiency of 10 −5 with 3.3 µW red-detuned optical pump, and 5.5% with 323 µW blue-detuned pump. Further study of quantum transduction at millikelvin temperatures is required to understand how the efficiency and added noise are affected by reduced mechanical dissipation, thermal conductivity, and thermal capacity. arXiv:1909.04627v1 [quant-ph]
Demonstrating a device that efficiently connects light, motion, and microwaves is an outstanding challenge in classical and quantum photonics. We make significant progress in this direction by demonstrating a photonic crystal resonator on thin-film lithium niobate (LN) that simultaneously supports high-Q optical and mechanical modes, and where the mechanical modes are coupled piezoelectrically to microwaves. For optomechanical coupling, we leverage the photoelastic effect in LN by optimizing the device parameters to realize coupling rates g 0 /2π ≈ 120 kHz. An optomechanical cooperativity C > 1 is achieved leading to phonon lasing. Electrodes on the nanoresonator piezoelectrically drive mechanical waves on the beam that are then read out optically allowing direct observation of the phononic bandgap. Quantum coupling efficiency of η ≈ 10 −8 from the input microwave port to the localized mechanical resonance is measured. Improvements of the microwave circuit and electrode geometry can increase this efficiency and bring integrated ultra-low-power modulators and quantum microwave-to-optical converters closer to reality.
Combining reprogrammable optical networks with complementary metal-oxide semiconductor (CMOS) electronics is expected to provide a platform for technological developments in on-chip integrated optoelectronics. We demonstrate how opto-electro-mechanical effects in micrometer-scale hybrid photonic-plasmonic structures enable light switching under CMOS voltages and low optical losses (0.1 decibel). Rapid (for example, tens of nanoseconds) switching is achieved by an electrostatic, nanometer-scale perturbation of a thin, and thus low-mass, gold membrane that forms an air-gap hybrid photonic-plasmonic waveguide. Confinement of the plasmonic portion of the light to the variable-height air gap yields a strong opto-electro-mechanical effect, while photonic confinement of the rest of the light minimizes optical losses. The demonstrated hybrid architecture provides a route to develop applications for CMOS-integrated, reprogrammable optical systems such as optical neural networks for deep learning.
We demonstrate a lithium niobate piezo-optomechanical frequency converter which exhibits an acousto-optic modulation V π = 0.02 V and a quantum conversion efficiency of 10 − 5.
We present a piezoelectric transducer in thin-film lithium niobate that converts a 1.7 GHz microwave signal to a mechanical wave in a single mode of a 1 micron-wide waveguide. We measure a -12 dB conversion efficiency that is limited by material loss. The design method we employ is widely applicable to the transduction of wavelength-scale structures used in emerging phononic circuits like those at the heart of many optomechanical microwave-to-optical converters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.