Feasibility of detecting intravascular flow using a catheter based endovascular optical coherence tomography (OCT) system is demonstrated in a porcine carotid model in vivo. The effects of A-line density, radial distance, signal-to-noise ratio, non-uniform rotational distortion (NURD), phase stability of the swept wavelength laser and interferometer system on Doppler shift detection limit were investigated in stationary and flow phantoms. Techniques for NURD induced phase shift artifact removal were developed by tracking the catheter sheath. Detection of high flow velocity (~51 cm/s) present in the porcine carotid artery was obtained by phase unwrapping techniques and compared to numerical simulation, taking into consideration flow profile distortion by the eccentrically positioned imaging catheter. Using diluted blood in saline mixture as clearing agent, simultaneous Doppler OCT imaging of intravascular flow and structural OCT imaging of the carotid artery wall was feasible. To our knowledge, this is the first in vivo demonstration of Doppler imaging and absolute measurement of intravascular flow using a rotating fiber catheter in carotid artery.
In this thesis, elastography is evaluated in combination with optical coherence tomography (OCT). Two approaches to OCT based elastography, Digital image correlation (DIC) and Doppler optical coherence elastography (DOCE), are evaluated for an intravascular setup using in vivo images from a porcine carotid model. DIC tracks the displacement of speckle patterns in consecutive frames, allowing the calculation of axial and lateral strain. Rapid speckle decorrelation was observed in preprocessed structural images, affecting the tracking and limiting the feasibility of this algorithm. DOCE measures axial strain based on relative tissue velocities. Rotational movement of the imaging optical fibre was the biggest source of artefacts in this imaging mode, but could be removed with a newly developed algorithm, based on the phase change induced in a surrounding catheter. The standard deviation of phase after artefact removal, measured in a stationary phantom experiment, was ~0.2 rad, corresponding to a minimum detectable velocity of 792 μm/s at a Doppler angle of 20°. The sensitivity allowed the detection of arterial blood flow velocity and pattern and the detection of adjacent veins, but did not allow direct elastography.
In this thesis, elastography is evaluated in combination with optical coherence tomography (OCT). Two approaches to OCT based elastography, Digital image correlation (DIC) and Doppler optical coherence elastography (DOCE), are evaluated for an intravascular setup using in vivo images from a porcine carotid model. DIC tracks the displacement of speckle patterns in consecutive frames, allowing the calculation of axial and lateral strain. Rapid speckle decorrelation was observed in preprocessed structural images, affecting the tracking and limiting the feasibility of this algorithm. DOCE measures axial strain based on relative tissue velocities. Rotational movement of the imaging optical fibre was the biggest source of artefacts in this imaging mode, but could be removed with a newly developed algorithm, based on the phase change induced in a surrounding catheter. The standard deviation of phase after artefact removal, measured in a stationary phantom experiment, was ~0.2 rad, corresponding to a minimum detectable velocity of 792 μm/s at a Doppler angle of 20°. The sensitivity allowed the detection of arterial blood flow velocity and pattern and the detection of adjacent veins, but did not allow direct elastography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.