Feasibility of detecting intravascular flow using a catheter based endovascular
optical coherence tomography (OCT) system is demonstrated in a porcine carotid
model in vivo. The effects of A-line density, radial distance,
signal-to-noise ratio, non-uniform rotational distortion (NURD), phase stability
of the swept wavelength laser and interferometer system on Doppler shift
detection limit were investigated in stationary and flow phantoms. Techniques
for NURD induced phase shift artifact removal were developed by tracking the
catheter sheath. Detection of high flow velocity (~51 cm/s) present in the
porcine carotid artery was obtained by phase unwrapping techniques and compared
to numerical simulation, taking into consideration flow profile distortion by
the eccentrically positioned imaging catheter. Using diluted blood in saline
mixture as clearing agent, simultaneous Doppler OCT imaging of intravascular
flow and structural OCT imaging of the carotid artery wall was feasible. To our
knowledge, this is the first in vivo demonstration of Doppler
imaging and absolute measurement of intravascular flow using a rotating fiber
catheter in carotid artery.
Endovascular optical coherence tomography (EV-OCT) is an emerging intravascular imaging technique for observing blood vessel walls. Fluctuating speckle noise, especially during rapid pull-back, can severely degrade the visibility of morphological structures. Moreover, the speckle pattern varies in different parts of the image due to beam divergence and is further complicated by interpolation through the coordinate transformation necessary for displaying the rotary scanning images, challenging the use of frequency domain analysis. In this study, a computationally efficient method using a generalized divergence regularization procedure is presented to suppress speckle noise in EV-OCT images. Results show substantial smoothing of the grainy appearance and enhanced visualization of deeper structures as demonstrated in porcine carotid arteries.
Application of speckle variance optical coherence tomography (OCT) to endovascular imaging faces difficulty of extensive motion artifacts inherently associated with arterial pulsations in addition to other physiological movements. In this study, we employed a technique involving a fourth order statistical method, kurtosis, operating on the endovascular OCT intensity images to visualize the vasa vasorum of carotid artery in vivo and identify its flow dynamic in a porcine model. The intensity kurtosis technique can distinguish vasa vasorum from the surrounding tissues in the presence of extensive time varying noises and dynamic motions of the arterial wall. Imaging of vasa vasorum and its proliferation, may compliment the growing knowledge of structural endovascular OCT in assessment and treatment of atherosclerosis in coronary and carotid arteries.
We report the first Fourier domain modelocked (FDML) laser constructed using optical parametric amplifier (OPA) in conjunction with an erbium-doped fiber amplifier (EDFA), centered at approximately 1555 nm, to the best of our knowledge. We utilize a one-pump OPA and a C-band EDFA in serial configuration with a tunable Fabry-Perot interferometer to generate a hybrid FDML spectrum. Results demonstrate a substantially better spectral shape, output power and stability than individual configurations, with decreased sensitivity to polarization changes. We believe this technique has the potential to enable several amplifiers to complement individual deficiencies resulting in improved spectral shapes and power generation for imaging applications such as optical coherence tomography (OCT).
In this paper, a multi-beam scanning technique is proposed to optimize the microvascular images of human skin obtained with Doppler effect based methods and speckle variance processing. Flow phantom experiments were performed to investigate the suitability for combining multi-beam data to achieve enhanced microvascular imaging. To our surprise, the highly variable spot sizes (ranging from 13 to 77 μm) encountered in high numerical aperture multi-beam OCT system imaging the same target provided reasonably uniform Doppler variance and speckle variance responses as functions of flow velocity, which formed the basis for combining them to obtain better microvascular imaging without scanning penalty. In vivo 2D and 3D imaging of human skin was then performed to further demonstrate the benefit of combining multi-beam scanning to obtain improved signal-to-noise ratio (SNR) in microvascular imaging. Such SNR improvement can be as high as 10 dB. To our knowledge, this is the first demonstration of combining different spot size, staggered multiple optical foci scanning, to achieve enhanced SNR for blood flow OCT imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.