Previous studies have suggested that several types of rules govern the generation of complex arm movements. One class of rules consists of optimizing an objective function (e.g., maximizing motion smoothness). Another class consists of geometric and kinematic constraints, for instance the coupling between speed and curvature during drawing movements as expressed by the two-thirds power law. It has also been suggested that complex movements are composed of simpler elements or primitives. However, the ability to unify the different rules has remained an open problem. We address this issue by identifying movement paths whose generation according to the two-thirds power law yields maximally smooth trajectories. Using equi-affine differential geometry we derive a mathematical condition which these paths must obey. Among all possible solutions only parabolic paths minimize hand jerk, obey the two-thirds power law and are invariant under equi-affine transformations (which preserve the fit to the two-thirds power law). Affine transformations can be used to generate any parabolic stroke from an arbitrary parabolic template, and a few parabolic strokes may be concatenated to compactly form a complex path. To test the possibility that parabolic elements are used to generate planar movements, we analyze monkeys' scribbling trajectories. Practiced scribbles are well approximated by long parabolic strokes. Of the motor cortical neurons recorded during scribbling more were related to equi-affine than to Euclidean speed. Unsupervised segmentation of simulta- neously recorded multiple neuron activity yields states related to distinct parabolic elements. We thus suggest that the cortical representation of movements is state-dependent and that parabolic elements are building blocks used by the motor system to generate complex movements.
Some studies suggest that complex arm movements in humans and monkeys may optimize several objective functions, while others claim that arm movements satisfy geometric constraints and are composed of elementary components. However, the ability to unify different constraints has remained an open question. The criterion for a maximally smooth (minimizing jerk) motion is satisfied for parabolic trajectories having constant equi-affine speed, which thus comply with the geometric constraint known as the two-thirds power law. Here we empirically test the hypothesis that parabolic segments provide a compact representation of spontaneous drawing movements. Monkey scribblings performed during a period of practice were recorded. Practiced hand paths could be approximated well by relatively long parabolic segments. Following practice, the orientations and spatial locations of the fitted parabolic segments could be drawn from only 2–4 clusters, and there was less discrepancy between the fitted parabolic segments and the executed paths. This enabled us to show that well-practiced spontaneous scribbling movements can be represented as sequences (“words”) of a small number of elementary parabolic primitives (“letters”). A movement primitive can be defined as a movement entity that cannot be intentionally stopped before its completion. We found that in a well-trained monkey a movement was usually decelerated after receiving a reward, but it stopped only after the completion of a sequence composed of several parabolic segments. Piece-wise parabolic segments can be generated by applying affine geometric transformations to a single parabolic template. Thus, complex movements might be constructed by applying sequences of suitable geometric transformations to a few templates. Our findings therefore suggest that the motor system aims at achieving more parsimonious internal representations through practice, that parabolas serve as geometric primitives and that non-Euclidean variables are employed in internal movement representations (due to the special role of parabolas in equi-affine geometry).
Neuroscientific studies of drawing-like movements usually analyze neural representation of either geometric (e.g., direction, shape) or temporal (e.g., speed) parameters of trajectories rather than trajectory's representation as a whole. This work is about identifying geometric building blocks of movements by unifying different empirically supported mathematical descriptions that characterize relationship between geometric and temporal aspects of biological motion. Movement primitives supposedly facilitate the efficiency of movements' representation in the brain and comply with such criteria for biological movements as kinematic smoothness and geometric constraint. The minimum-jerk model formalizes criterion for trajectories' maximal smoothness of order 3. I derive a class of differential equations obeyed by movement paths whose nth-order maximally smooth trajectories accumulate path measurement with constant rate. Constant rate of accumulating equi-affine arc complies with the 2/3 power-law model. Candidate primitive shapes identified as equations' solutions for arcs in different geometries in plane and in space are presented. Connection between geometric invariance, motion smoothness, compositionality and performance of the compromised motor control system is proposed within single invariance-smoothness framework. The derived class of differential equations is a novel tool for discovering candidates for geometric movement primitives.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.