Cerium (Ce) is a promising candidate ion for application in bone tissue engineering (BTE) since it reduces the presence of reactive oxygen species. Ce-doped mesoporous bioactive glass nanoparticles (MBGNs) serving as vectors for the local application of Ce already demonstrated stimulating effects on the expression of pro-osteogenic genes in Saos-2 cells. So far, there is no evidence available about the effects of Ce-doped MBGNs on the viability, osteogenic differentiation and the formation of the osseous extracellular matrix (ECM) of primary human bone marrow-derived mesenchymal stromal cells (BMSCs). Therefore, in this study, the biocompatibility of the ionic dissolution products (IDPs) of MBGNs containing increasing concentrations of CeO2 (0.05 MCe-MBGNs, composition in mol%: 86.6SiO2-12.1CaO-1.3CeO2; and 0.2 MCe-MBGNs, composition in mol%: 86.0SiO2-11.8CaO-2.2CeO2) and unmodified MBGNs (composition in mol%: 86SiO2-14CaO) was evaluated using human BMSCs. Eventually, the impact of the MBGNs’ IDPs on the cellular osteogenic differentiation and their ability to build and mature a primitive osseous ECM was assessed. The Ce-doped MBGNs had a positive influence on the viability and stimulated the cellular osteogenic differentiation of human BMSCs evaluated by analyzing the activity of alkaline phosphate as a marker enzyme for osteoblasts in the present setting. Furthermore, the formation and calcification of a primitive osseous ECM was significantly stimulated in the presence of Ce-doped MBGNs in a positive concentration-dependent manner as demonstrated by an elevated presence of collagen and increased ECM calcification. The results of this in-vitro study show that Ce-doped MBGNs are attractive candidates for further application in BTE.
Mesoporous bioactive glass nanoparticles (MBGNs) have demonstrated promising properties for the local delivery of therapeutically active ions with the aim to improve their osteogenic properties. Manganese (Mn), zinc (Zn), and copper (Cu) ions have already shown promising pro‐osteogenic properties. Therefore, the concentration‐dependent impact of MBGNs (composition in mol%: 70 SiO2, 30 CaO) and MBGNs containing 5 mol% of either Mn, Zn, or Cu (composition in mol%: 70 SiO2, 25 CaO, 5 MnO/ZnO/CuO) on the viability and osteogenic differentiation of human marrow‐derived mesenchymal stromal cells (BMSCs) was assessed in this study. Mn‐doped MBGNs (5Mn‐MBGNs) showed a small “therapeutic window” with a dose‐dependent negative impact on cell viability but increasing pro‐osteogenic features alongside increasing Mn concentrations. Due to a constant release of Zn, 5Zn‐MBGNs showed good cytocompatibility and upregulated the expression of genes encoding for relevant members of the osseous extracellular matrix during the later stages of cultivation. In contrast to all other groups, BMSC viability increased with increasing concentration of Cu‐doped MBGNs (5Cu‐MBGNs). Furthermore, 5Cu‐MBGNs induced an increase in alkaline phosphatase activity. In conclusion, doping with Mn, Zn, or Cu can enhance the biological properties of MBGNs in different ways for their potential use in bone regeneration approaches.
Mesoporous bioactive glass nanoparticles (MBGNs) have gained relevance in bone tissue engineering, especially since they can be used as vectors for therapeutically active ions like zinc (Zn) or copper (Cu). In this study, the osteogenic properties of the ionic dissolution products (IDPs) of undoped MBGNs (composition in mol%: 70 SiO2, 30 CaO) and MBGNs doped with 5 mol% of either Zn (5Zn-MBGNs) or Cu (5Cu-MBGNs; compositions in mol%: 70 SiO2, 25 CaO, 5 ZnO/CuO) on human bone marrow-derived mesenchymal stromal cells were evaluated. Extracellular matrix (ECM) formation and calcification were assessed, as well as the IDPs’ influence on viability, cellular osteogenic differentiation and the expression of genes encoding for relevant members of the ECM. The IDPs of undoped MBGNs and 5Zn-MBGNs had a comparable influence on cell viability, while it was enhanced by IDPs of 5Cu-MBGNs compared to the other MBGNs. IDPs of 5Cu-MBGNs had slightly positive effects on ECM formation and calcification. 5Zn-MBGNs provided the most favorable pro-osteogenic properties since they increased not only cellular osteogenic differentiation and ECM-related gene expression but also ECM formation and calcification significantly. Future studies should analyze other relevant properties of MBGNs, such as their impact on angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.