Films of iron selenide (FeSe) one unit cell thick grown on strontium titanate (SrTiO3 or STO) substrates have recently shown superconducting energy gaps opening at temperatures close to the boiling point of liquid nitrogen (77 kelvin), which is a record for the iron-based superconductors. The gap opening temperature usually sets the superconducting transition temperature Tc, as the gap signals the formation of Cooper pairs, the bound electron states responsible for superconductivity. To understand why Cooper pairs form at such high temperatures, we examine the role of the SrTiO3 substrate. Here we report high-resolution angle-resolved photoemission spectroscopy results that reveal an unexpected characteristic of the single-unit-cell FeSe/SrTiO3 system: shake-off bands suggesting the presence of bosonic modes, most probably oxygen optical phonons in SrTiO3 (refs 5, 6, 7), which couple to the FeSe electrons with only a small momentum transfer. Such interfacial coupling assists superconductivity in most channels, including those mediated by spin fluctuations. Our calculations suggest that this coupling is responsible for raising the superconducting gap opening temperature in single-unit-cell FeSe/SrTiO3.
The layered transition metal dichalcogenides (TMDs) MX 2 (M = Mo, W; X = S, Se, Te), a class of graphene-like two-dimensional materials, have attracted significant interest because they demonstrate quantum confinement at the single-layer limit 13 . As with graphene, these layered materials can be easily exfoliated mechanically to provide monolayers 3-7,14-16 and assume a hexagonal honeycomb structure in which the M and X atoms are located at alternating corners of the hexagons. However, unlike graphene, which has a gapless Dirac cone band structure, MX 2 has a rather large bandgap, making these materials more versatile as candidates for thin, flexible device applications and useful for a variety of other applications including lubrication 16 , catalysis 17 , transistors 18 and lithium-ion batteries 19 . Most interestingly, an indirect to direct bandgap transition in the monolayer limit has been predicted theoretically and supported experimentally by optical measurements [3][4][5]9,12 . Because of the direct bandgap, monolayer MX 2 is favourable for optoelectronic applications5 and field-effect transistors 15,16,18 . Furthermore, both the conduction and valence bands have two energy degenerate valleys at corners of the first Brillouin zone, making it viable to optically control the charge carriers in these valleys and suggesting the possibility of valley-based electronic and optoelectronic applications 3,6-8 .Despite these exciting developments, direct experimental verification of the novel band structure at the monolayer limit remains lacking. Furthermore, for many applications, it is vital to manufacture high-quality epitaxial films with controllable methods such as chemical vapour deposition (CVD) or molecular beam epitaxy (MBE) 20,21 .
Obtaining insight into microscopic cooperative effects is a fascinating topic in condensed matter research because, through self-coordination and collectivity, they can lead to instabilities with macroscopic impacts like phase transitions. We used femtosecond time- and angle-resolved photoelectron spectroscopy (trARPES) to optically pump and probe TbTe3, an excellent model system with which to study these effects. We drove a transient charge density wave melting, excited collective vibrations in TbTe3, and observed them through their time-, frequency-, and momentum-dependent influence on the electronic structure. We were able to identify the role of the observed collective vibration in the transition and to document the transition in real time. The information that we demonstrate as being accessible with trARPES will greatly enhance the understanding of all materials exhibiting collective phenomena.
A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials, such as the cuprate high-temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates, where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping-and temperaturedependence ARPES study of spectral gaps in Bi 2 Sr 2 CaCu 2 O 8+δ , covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p = 0.19 for the pseudogap phase and p = 0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below T c and exists p > 0.19 at higher temperatures. Our data imply a revised phase diagram that reconciles conflicting reports about the endpoint of the pseudogap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome.quantum materials | correlated electrons | laser ARPES T he momentum-resolved nature of angle-resolved photoemission spectroscopy (ARPES) makes it a key probe of the cuprates, the interesting phases of which have anisotropic momentumspace structure (1-4): both the d-wave superconducting gap and the pseudogap above T c have a maximum at the antinode [AN, near (π, 0)] and are ungapped at the node, although the latter phase also exhibits an extended ungapped arc (5-8). Ordering phenomena often result in gapping of the quasiparticle spectrum, and distinct quantum states produce spectral gaps with characteristic temperature, doping, and momentum dependence. These phenomena were demonstrated by recent ARPES experiments that argued that the pseudogap is a distinct phase from superconductivity based on their unique phenomenology (8-15): the pseudogap dominates near the AN (8, 11), and its magnitude increases with underdoping (11, 12), whereas near-nodal (NN) gaps have a different doping dependence and can be attributed to superconductivity because they close at T c (8, 12). Previous measurements focused on AN or intermediate (IM) momenta, but laser-ARPES, with its superior resolution and enhanced statistics, allows for precise gap measurements near the node where the gap is smallest. Our work is unique in its attention to NN momenta using laser-ARPES, and we demonstrate, via a single technique, that three distinct quantum phases manifest in different NN phenomenology as a function of doping. ResultsGaps at parallel cuts were determined by fitting symmetrized energy distribution curves (EDCs) at k F to a minimal model (16).The Fermi wavevector, k F , is defined by the minimum gap locus. Example spectra, raw and symmetrized EDCs at k F , and fits are shown for UD92 (underdoped, T c = 92) ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.