Well-log-to-seismic tying is a key step in many interpretation workflows for oil and gas exploration. Synthetic seismic traces from the wells are often manually tied to seismic data; this process can be very time consuming and, in some cases, inaccurate. Automatic methods, such as dynamic time warping (DTW), can match synthetic traces to seismic data. Although these methods are extremely fast, they tend to create interval velocities that are not geologically realistic. We have described the modification of DTW to create a blocked dynamic warping (BDW) method. BDW generates an automatic, optimal well tie that honors geologically consistent velocity constraints. Consequently, it results in updated velocities that are more realistic than other methods. BDW constrains the updated velocity to be constant or linearly variable inside each geologic layer. With an optimal correlation between synthetic seismograms and surface seismic data, this algorithm returns an automatically updated time-depth curve and an updated interval velocity model that still retains the original geologic velocity boundaries. In other words, the algorithm finds the optimal solution for tying the synthetic to the seismic data while restricting the interval velocity changes to coincide with the initial input blocking. We have determined the application of the BDW technique on a synthetic data example and field data set.
Time-lapse seismic monitoring is a powerful technique for reservoir management and the optimization of hydrocarbon recovery. In time-lapse seismic datasets, the difference in seismic properties across different vintages enables the detection of spatio-temporal changes in saturated properties and structure induced by production. The main objectives are (1) to identify bypass pay zones in time-lapse seismic data for the deepwater Amberjack field, located in the Gulf of Mexico, (2) confirm the identified bypass pay zones in the results of reservoir simulation, and (3) recommend well planning strategies to exploit these bypassed resources. A high-fidelity seismic-to-simulation 4D workflow that incorporates seismic, petrophysics, petrophysical property modeling, and reservoir simulation was employed, which leveraged cross-discipline interaction, interpretation, and integration to extend asset management capabilities. The workflow addresses geology (well log interpretation and framework development), geophysics (seismic interpretation, velocity modeling, and seismic inversion), and petrophysical property modeling (earth models and co-located co-simulation of petrophysical properties with P-impedance from seismic inversion). An embedded petro-elastic model (PEM) in the reservoir simulator is then used to affiliate spatial dry rock properties with saturation properties to compute dynamic elastic properties, which can be related to multi-vintage P-impedance from time-lapse seismic inversion. In the absence of the requisite dry rock properties for the PEM, a small data engine is used to determine these absent properties using metaheuristic optimization techniques. Specifically, two particle swarm optimization (PSO) applications, including an exterior penalty function (EPF), are modified resulting in the development of nested and average methods, respectively. These methods simultaneously calculate the missing rock parameters (dry rock bulk modulus, shear modulus, and density) necessary for dynamic, embedded P-impedance calculation in the history-constrained reservoir simulation results. Afterward, a graphic-enabled method was devised to appropriately classify the threshold to discriminate non-reservoir (including bypassed pay) and reservoir from the P-impedance difference. Its results are compared to unsupervised learning (k-means clustering and hierarchical clustering). From seismic data, one can identify bypassed pay locations, which are confirmed from reservoir simulation after conducting a seismic-driven history match. Finally, infill wells are planned, and then modeled in the reservoir simulator.
A flow simulation-driven time-lapse seismic feasibility study is performed for the Amberjack field that leverages existing multi-vintage 4D time-lapse seismic data. The focus is a field consisting of stacked shelf and deepwater reservoir sands situated in the Gulf of Mexico in Mississippi Canyon Block 109 in 1,030 ft of water. The solution leverages seismic interpretation, seismic inversion, earth modeling, and reservoir simulation [including embedded petro-elastic modeling (PEM) capabilities] to enable the reconciliation of data across multiple seismic vintages and forecast the optimal future seismic survey acquisition in a closed-loop. The overarching feasibility solution is integrated and simulation-driven involving multi-vintage seismic inversion, spatially constraining the petrophysical property model by seismic inversion, and performing reservoir simulation with the embedded PEM. The PEM is used to compute P-impedance and Vp/Vs dynamically, which enables tuning to both historical production and multi-vintage seismic data. The process considers a hybrid fine-scale 3D geocellular model in which the only upscaling of petrophysical properties occurs when the P-impedance from seismic inversion is blocked to the 3D geocellular grid. This process minimizes resampling errors and promotes direct tuning of the simulator response with registered seismic that has been blocked to a geocellular earth model grid. The results illustrate a three-part simulation-to-seismic calibration procedure that culminates with a prediction step which leads to a simulation-proposed time-lapse seismic acquisition timeline that is consistent with the calibrated reservoir simulation model. The first calibration tunes the model to historical production profiles. The second calibration reconciles the dynamic P-impedance estimate of the simulated shallow reservoir with that of the seismic inversion blocked to the 3D geocellular grid. The combination of these two steps outline a seismic-driven history matching process whereby the simulation model is not only consistent with production data but also the subsurface geologic and fluid saturation description. Large and short wavelength disparities in the P-impedance calibration existing between the simulator response and the time-lapse seismic data are attributed to resampling errors as a result of seismic inversion-derived P-impedance being blocked to the 3D geocelluar grid, as well as sparse well control in the earth model which leads to the obscuring of some asset-specific characteristics. The results of the third calibration step show how the time-lapse seismic feasibility solution accurately confirms prior seismic surveys undertaken in the asset. Given this confirmation, the solution achieves a suitable prediction of seismic-derived rock property response from the reservoir simulator as well as the optimal future time-lapse seismic acquisition time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.