This paper presents a comprehensive review of the literature on one-dimensional (1D) nanostructures (nanowires, nanoribbons, nanotubes, nanobelts, and nanofibers) of π-conjugated small molecules, oligomers, and polymers. The diverse methods used in assembling the molecular building blocks into 1D functional nanostructures and nanodevices are discussed, including hard and soft template-assisted synthesis, electrospinning, nanolithography, self-assembly in solution and at interfaces, physical vapor transport, and other strategies. Optical, charge transport, electronic, and photoconductive properties of nanowires and nanotubes of selected classes of π-conjugated molecular systems are discussed next, highlighting unique features of the 1D nanostructures compared to 2D thin films. Overview of applications of these 1D organic nanostructures ranging from nanoscale light-emitting diodes, field-emission devices, organic photovoltaics, sensors/biosensors, spin-electronics, and nanophotonics to nanoelectronics is then given. The final section provides our brief concluding comments on the status of the field and on areas of outstanding challenges and opportunities for future work. We believe that the emerging confluence of nanoscience and organic semiconductors will greatly enrich both fields while leading to enhanced performance in organic electronics and affordable nanotechnologies.
Poly(3-butylthiophene) (P3BT) nanowires, prepared by solution-phase self-assembly, have been used to construct highly efficient P3BT/fullerene nanocomposite solar cells. The fullerene/P3BT nanocomposite films showed an electrically bicontinuous nanoscale morphology with average field-effect hole mobilities as high as 8.0 x 10(-3) cm2/Vs due to the interconnected P3BT nanowire network revealed by TEM and AFM imaging. The power conversion efficiency of fullerene/P3BT nanowire devices was 3.0% (at 100 mW/cm2, AM1.5) in air and found to be identical with our similarly tested fullerene/poly(3-hexylthiophene) photovoltaic cells. This discovery expands the scope of promising materials and architectures for efficient bulk heterojunction solar cells.
The synthesis and characterization of two new thiophene copolymers with backbone phthalimide units is reported. Thin-film optical and wide-angle X-ray diffraction measurements indicate extended electronic conjugation and close intermolecular pi-stacking for both polymers. Ambient carrier mobility of thin-film transistors prepared from these polymers is as high as 0.28 cm(2)/(V s) with an on/off ratio greater than 10(5).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.