The study underlines the overall 12-month effectiveness of various forms of agonist MT. Findings reveal relatively high retention rates, low mortality rates, and improvements in most 12-month outcome domains, except for mental health and quality of life. PMC settings appear to be a good additional option to improve access to MTs.
The purpose of this study was to determine to what extent the cat parastriate cortex processes afferent geniculate activity in a way similar to that in area 17. The area explored was located on the lateral gyrus between the Horsley-Clarke coordinates A1 to 4 and L3 to 4. The receptive-field properties of area 18 cells and their responses to electrical stimulation of afferent and efferent pathways were measured with the same methods as described previously in area 17. Mutual correlations among these items were calculated and compared with the respective data from area 17. The results of this correlative analysis revealed numerous similarities between the two areas with regard to their afferent and efferent connections and their intrinsic organization. Consequently, the structure of the receptive fields and their numerical distribution resembled those in area 17. The same was true for the correlations between receptive-field parameters and afferent and efferent connectivity. The main differences were that area 18 cells had larger receptive fields and responded to considerably higher stimulus velocities. It is suggest-d that these differences are caused by the fact that area 18 receives subcortical afferents of the Y-type, whereas the dominant input to area 17 comes from the X-system. It is concluded that the area investigated in this study is organized in parallel to area 17 and deals with other aspects of visual information than area 17.
The purposes of this study were 1) to relate the receptive-field characteristics of area 17 cells to their afferent and efferent connections, and 2) to obtain quantitative data from area 17 neurons for later comparison with area 18 cells. Intra- and extracellular recordings were obtained in paralyzed preparations which were anesthetized with nitrous oxide. The connectivities of the recorded cells were determined from responses to electrical stimulation of afferent and efferent pathways. In parallel to the classification of units as simple and complex cells, the receptive fields were grouped in four classes according to the spatial arrangement of on- and off-areas; class I, fields with exclusive on- or off-areas; class II, fields with spatially separate on- and off-areas; class III, fields with mixed on-off areas; class IV, fields which could not be mapped with stationary stimuli. The results from electrical stimulation suggest two major classes of cells: cells in the first group are driven mainly or exclusively by LGN afferents. They rarely receive additional excitation from intrinsic or callosal afferents and rarely possess corticofugal axons. Cells in the second group receive either converging inputs from LGN afferents and further intrinsic afferents or only from intrinsic afferents. They frequently received additional input from callosum and from recurrent collaterals of corticofugal axons. They project subcortically more often than cells in the first group. Cells in both groups can be driven either by X- or Y-type afferents. Cells in the first group have mainly class I and class II fields or simple fields, whereas the neurons in the second group have mainly class III and class IV fields or complex fields. Thus, simple and complex cells differ in their connectivity patterns, but the discriminative parameter is neither the selective connection to the X- or the Y-system nor, in a strict sense, the synaptic distance from subcortical input. From the combined consideration of receptive-field properties and connectivity patterns it is concluded that class I and class II cells or simple cells are concerned mainly with the primary analysis of subcortical activity, whereas class III and class IV cells or complex cells perform a correlative analysis between highly convergent activity from extrinsic and intrinsic afferents.
Although still rather controversial, empirical data on the neurobiology of schizophrenia have reached a degree of complexity that makes it hard to obtain a coherent picture of the malfunctions of the brain in schizophrenia. Theoretical neuropsychiatry should therefore use the tools of theoretical sciences like cybernetics, informatics, computational neuroscience or systems science. The methodology of systems science permits the modeling of complex dynamic nonlinear systems. Such procedures might help us to understand brain functions and the disorders and actions of psychiatric drugs better.
Progress in the pharmacological treatment of schizophrenia is dependent on the extent of our understanding of the brain as the basis of this disease. Detailed examination of neurobiological data shows that only a systemic approach will integrate this wealth of information. For this reason, the steps involved in model building should be clarified, as further progress will necessitate closer cooperation between neuropsychiatrists, neurobiologists and systems scientists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.