Granular pipe flows are characterized by intermittent behavior and large, potentially destructive solid fraction variations in the transport direction. By means of particle-based numerical simulations of gravity-driven flows in vertical pipes, we show that it is possible to obtain steady material transport by adding a helical texture to the inner-wall of the pipe. The helical texture leads to a more homogeneous mass flux along the pipe, prevents the emergence of large density waves and substantially reduces the probability of plug formation thus avoiding jamming of the particulate flow. We show that the granular mass flux Q through a pipe of diameter D with a helical texture of wavelength l follows the equation
The homogenization of granular flows through narrow pipes is important for a broad range of technological and industrial applications. Here we show, by means of molecular dynamics simulations, that such homogenization can be achieved by adding a helical inner-wall texture to the pipe, without the need for energy input from any external source. By using such a texture, jamming is prevented and the granular flux can be predicted using a modified Beverloo equation that accounts for the wavelength of the helical texture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.