This novel polylactide stent showed sufficient mechanic stability, and by incorporation of paclitaxel, a significant potential to reduce restenosis development after vascular intervention was seen.
Independent of the scanner hardware or dedicated convolution kernels, routine evaluation of most coronary artery stents is not yet feasible using MSCT.
Coronary artery stenting following balloon angioplasty represents the gold standard in revascularization of coronary artery stenoses. However, stent deployment as well as percutaneous transluminal coronary angioplasty (PTCA) alone causes severe injury of vascular endothelium. The damaged endothelium is intrinsically repaired by locally derived endothelial cells and by circulating endothelial progenitor cells from the blood, leading to re‐population of the denuded regions within several weeks to months. However, the process of re‐endothelialization is often incomplete or dysfunctional, promoting in‐stent thrombosis and restenosis. The molecular and biomechanical mechanisms that influence the process of re‐endothelialization in stented segments are incompletely understood. Once the endothelium is restored, endothelial function might still be impaired. Several strategies have been followed to improve endothelial function after coronary stenting. In this review, the effects of stenting on coronary endothelium are outlined and current and future strategies to improve endothelial function after stent deployment are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.