The current perspective of NO biology is formulated predominantly from studies of NO synthesis. The role of S-nitrosothiol (SNO) formation and turnover in governing NO-related bioactivity remains uncertain. We generated mice with a targeted gene deletion of S-nitrosoglutathione reductase (GSNOR), and show that they exhibit substantial increases in whole-cell S-nitrosylation, tissue damage, and mortality following endotoxic or bacterial challenge. Further, GSNOR(-/-) mice have increased basal levels of SNOs in red blood cells and are hypotensive under anesthesia. Thus, SNOs regulate innate immune and vascular function, and are cleared actively to ameliorate nitrosative stress. Nitrosylation of cysteine thiols is a critical mechanism of NO function in both health and disease.
Background-Patients with left ventricular dysfunction have an elevated risk of sudden cardiac death. However, the substrate for ventricular arrhythmia in patients with nonischemic cardiomyopathy remains poorly understood. We hypothesized that the distribution of scar identified by MRI is predictive of inducible ventricular tachycardia. Methods and Results-Short-axis cine steady-state free-precession and postcontrast inversion-recovery gradient-echo MRI sequences were obtained before electrophysiological study in 26 patients with nonischemic cardiomyopathy. Left ventricular ejection fraction was measured from end-diastolic and end-systolic cine images. The transmural extent of scar as a percentage of wall thickness (percent scar transmurality) in each of 12 radial sectors per slice was calculated in all myocardial slices. The percentages of sectors with 1% to 25%, 26% to 50%, 51% to 75%, and 76% to 100% scar transmurality were determined for each patient. Predominance of scar distribution involving 26% to 75% of wall thickness was significantly predictive of inducible ventricular tachycardia and remained independently predictive in the multivariable model after adjustment for left ventricular ejection fraction (odds ratio, 9.125; Pϭ0.020).
Conclusions-MR
Background-Magnetic resonance imaging (MRI) is an important diagnostic modality currently unavailable for millions of patients because of the presence of implantable cardiac devices. We sought to evaluate the diagnostic utility and safety of noncardiac and cardiac MRI at 1.5T using a protocol that incorporates device selection and programming and limits the estimated specific absorption rate of MRI sequences. Methods and Results-Patients with no imaging alternative and with devices shown to be MRI safe by in vitro phantom and in vivo animal testing were enrolled. Of 55 patients who underwent 68 MRI studies, 31 had a pacemaker, and 24 had an implantable defibrillator. Pacing mode was changed to "asynchronous" for pacemaker-dependent patients and to "demand" for others. Magnet response and tachyarrhythmia functions were disabled. Blood pressure, ECG, oximetry, and symptoms were monitored. Efforts were made to limit the system-estimated whole-body average specific absorption rate to 2.0 W/kg (successful in Ͼ99% of sequences) while maintaining the diagnostic capability of MRI. No episodes of inappropriate inhibition or activation of pacing were observed. There were no significant differences between baseline and immediate or long-term (median 99 days after MRI) sensing amplitudes, lead impedances, or pacing thresholds. Diagnostic questions were answered in 100% of nonthoracic and 93% of thoracic studies. Clinical findings included diagnosis of vascular abnormalities (9 patients), diagnosis or staging of malignancy (9 patients), and assessment of cardiac viability (13 patients). Conclusions-Given appropriate precautions, noncardiac and cardiac MRI can potentially be safely performed in patients with selected implantable pacemaker and defibrillator systems.
The present study indicates that activated platelets modulate chemotactic (MCP-1) and adhesive (ICAM-1) properties of endothelial cells via an NF-kappaB-dependent mechanism. Platelet-induced activation of the NF-kappaB system might contribute to early inflammatory events in atherogenesis.
In septic patients platelets become activated and are hyperadhesive to other vascular cells including neutrophils and endothelium. This may induce sequestration of platelets and microcirculatory arrest, thus the development of MODS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.