Oligomeric Pro-Hyp-Gly- (POG-) peptides, wherein the collagenous triple helix is supported by C-terminal capping, exhibit silica precipitation properties (O, Hyp = (2S,4R)hydroxyproline). As quantified by a molybdate assay, the length of the covalently tethered triple helix (number of POG units) determines the amount of amorphous silica obtained from silicic acid solution. Although lacking charged side chains, the synthetic collagens precipitate large quantities of silicic acid resulting in micrometer-sized spheres of varying surface morphologies as analyzed by scanning electron microscopy. Similar precipitation efficiencies on a fast time scale of less than 10 min were previously described only for biogenic diatom proteins and sponge collagen, respectively, which have a considerably higher structural complexity and limited accessibility. The minicollagens described here provide an unexpected alternative to the widely used precipitation conditions, which generally depend on (poly-)amines in phosphate buffer. Collagen can form intimate connections with inorganic matter. Hence, silica-enclosed collagens have promising perspectives as composite materials.
Proteins perform a variety of essential functions in living cells and thus are of critical interest for drug delivery as well as disease biomarkers. The different functions are derived from a hugely diverse set of structures, fueling interest in their conformational states. Surface-enhanced infrared absorption spectroscopy has been utilized to detect and discriminate protein monomers. As an important step forward, we are investigating collagen peptides consisting of a triple helix. While they constitute the main structural building blocks in many complex proteins, they are also a perfect model system for the complex proteins relevant in biological systems. Their complex spectroscopic information as well as the overall small size present a significant challenge for their detection and discrimination. Using resonant plasmonic nanoslits, which are known to show larger specificity compared to nanoantennas, we overcome this challenge. We perform in vitro surface-enhanced absorption spectroscopy studies and track the conformational changes of these collagen peptides under two different external stimuli, which are temperature and chemical surroundings. Modeling the coupling between the amide I vibrational modes and the plasmonic resonance, we can extract the conformational state of the collages and thus monitor the folding and unfolding dynamics of even a single monolayer. This leads to new prospects in studies of single layers of proteins and their folding behavior in minute amounts in a living environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.