Autism is a neurodevelopmental disorder with unclear pathogenesis. Many clinical observations and hormone studies have suggested the involvement of the neuroprotective hormone ghrelin in autism. The current study aimed to investigate the potential role of ghrelin in autism and to elucidate the associated hormonal dysregulation. This case-control study investigated acyl ghrelin (AG), des-acyl ghrelin (DG), total testosterone (TT), free testosterone (FT), leptin and growth hormone (GH) levels in 31 male children with autism and 28 healthy age and sex-matched controls. Hormone levels were measured in the blood using enzyme-linked immunosorbent assay and chemiluminescence immunoassay kits. AG, DG and GH levels were significantly lower in the autism group than in the control group (p ≤ 0.001, p ≤ 0.005 and p ≤ 0.05, respectively). However, TT, FT and leptin levels were significantly higher in the autism group than in the control group (p ≤ 0.05, p ≤ 0.001 and p ≤ 0.01, respectively). Our results for the first time demonstrate low AG and DG levels in autistic children. Considering the capacity of ghrelin to affect neuroinflammatory and apoptotic processes that are linked to autism, this study suggests a potential role for the hormone ghrelin in the pathogenesis of autism.
This study demonstrates a significantly lower 2D:4D ratio in Saudi boys with autism, which indirectly suggests that these boys were exposed to high levels of prenatal FT. Accordingly, prenatal exposure to high levels of FT is a risk factor for the development of autism, and the postnatal measurement of the 2D:4D ratio could be a potential screening tool.
Glucocorticoid hormones (GCs) released from the fetal/maternal glands during late gestation are required for normal development of mammalian organs and tissues. Accordingly, synthetic glucocorticoids have proven to be invaluable in perinatal medicine where they are widely used to accelerate fetal lung maturation when there is risk of pre-term birth and to promote infant survival. However, clinical and pre-clinical studies have demonstrated that inappropriate exposure of the developing brain to elevated levels of GCs, either as a result of clinical over-use or after stress-induced activation of the fetal/maternal adrenal cortex, is linked with significant effects on brain structure, neurological function and behaviour in later life. In order to understand the underlying neural processes, particular interest has focused on the midbrain dopaminergic systems, which are critical regulators of normal adaptive behaviours, cognitive and sensorimotor functions. Specifically, using a rodent model of GC exposure in late gestation (approximating human brain development at late second/early third trimester), we demonstrated enduring effects on the shape and volume of the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) (origins of the mesocorticolimbic and nigrostriatal dopaminergic pathways) on the topographical organisation and size of the dopaminergic neuronal populations and astrocytes within these nuclei and on target innervation density and neurochemical markers of dopaminergic transmission (receptors, transporters, basal and amphetamine-stimulated dopamine release at striatal and prefrontal cortical sites) that impact on the adult brain. The effects of antenatal GC treatment (AGT) were both profound and sexually-dimorphic, not only in terms of quantitative change but also qualitatively, with several parameters affected in the opposite direction in males and females. Although such substantial neurobiological changes might presage marked behavioural effects, in utero GC exposure had only a modest or no effect, depending on sex, on a range of conditioned and unconditioned behaviours known to depend on midbrain dopaminergic transmission. Collectively, these findings suggest that apparent behavioural normality in certain tests, but not others, arises from AGT-induced adaptations or compensatory mechanisms within the midbrain dopaminergic systems, which preserve some, but not all functions. Furthermore, the capacities for molecular adaptations to early environmental challenge are different, even opponent, in males and females, which may account for their differential resilience or failure to perform adequately in behavioural tests. Behavioural “normality” is thus achieved by the midbrain dopaminergic network operating outside its normal limits (in a state of allostasis), rendering it at greater risk to malfunction when challenged in later life. Sex-specific neurobiological programming of midbrain dopaminergic systems may, therefore, have psychopathological relevance for the sex bias commonly found in bra...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.