Graphene oxide (GO), the functionalized graphene with oxygen-containing chemical groups, has recently attracted resurgent interests because of its superior properties such as large surface area, mechanical stability, tunable electrical and optical properties. Moreover, the surface functional groups of hydroxyl, epoxy and carboxyl make GO an excellent candidate in coordinating with other materials or molecules. Owing to the expanded structural diversity and improved overall properties, GO and its composites hold great promise for versatile applications of energy storage/conversion and environment protection, including hydrogen storage materials, photocatalyst for water splitting, removal of air pollutants and water purification, as well as electrode materials for various lithium batteries and supercapacitors. In this review, we present an overview on the current successes, as well as the challenges, of the GO-based materials for energy and environmental applications.
Background and Aim: Nonalcoholic fatty liver disease (NAFLD) is considered to be the liver component of metabolic syndrome. However, the impact of NAFLD on metabolic syndrome is unclear. The aim of this study was to explore the influence of NAFLD on the development of metabolic disorders. Methods: Patients with NAFLD and an age, sex, and occupation-matched control group were recruited from employees of Bao-Steel Group (Shanghai, China) who had received medical check-ups biennially between 1995 and 2002. Anthropometric and laboratory data, and incidence of metabolic disorders were assessed at baseline and at follow-up of at least 4 years. SPSS 11.5 was used for statistical analysis. Results: The study consisted of 358 patients (326 men and 32 women) and 788 matched controls (711 men and 77 women) with a similar mean age of 39.0 years and median follow-up of 6 years. At the end of follow-up, incidence of obesity (47.6% vs 19.5%), hypertension (69.6% vs 16.3%), hypertriglyceridemia (39.1% vs 16.3%), hypercholesterolemia (24.5% vs 17.3%), impaired fasting glucose (IFG) (25.1% vs 11.6%), diabetes mellitus (20.3% vs 5.2%) and multiple metabolic disorders (MMD) (56.3% vs 16.3%) were significantly higher in the fatty liver group than the control group. Interestingly, the mean alanine aminotransferase (ALT) level in patients with fatty liver significantly decreased at follow-up compared with baseline (28.56 Ϯ 18.86 vs 31.51 Ϯ 18.34 U/L, P < 0.05). To separate the effects of obesity from fatty liver, the subjects were re-classified according to the presence of obesity and fatty liver at baseline. The incidence of hypertension (61.1% vs 41.3%), hypertriglyceridemia (38.1% vs 15.0%), hypercholesterolemia (29.9% vs 16.6%), IFG (21.3% vs 10.0%) and diabetes (11.1% vs 4.3%) were significantly higher in the fatty liver group without obesity (n = 84) than in the group with without fatty liver or obesity (n = 614). In addition, the incidence of hypertension (72.9% vs 57.4%), hypertriglyceridemia (39.4% vs 22.7%) and diabetes (23.2% vs 8.4%) was higher in the group with fatty liver and obesity (n = 274) than in the group with obesity alone (n = 174).
Conclusions:The presence of NAFLD might predict the development of metabolic disorders due to insulin resistance, rather than obesity itself. ALT levels decreased over time in patients with fatty liver.
Objective
Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease with limited reliable diagnostic biomarkers. We investigated whether gene methylation could meet sensitivity and specificity criteria for a robust biomarker.
Methods
IFI44L promoter methylation was examined using DNA samples from a discovery set including 377 patients with SLE, 358 healthy controls (HCs) and 353 patients with rheumatoid arthritis (RA). Two independent sets including 1144 patients with SLE, 1350 HCs, 429 patients with RA and 199 patients with primary Sjögren’s syndrome (pSS) were used for validation.
Results
Significant hypomethylation of two CpG sites within IFI44L promoter, Site1 (Chr1: 79 085 222) and Site2 (Chr1: 79 085 250; cg06872964), was identified in patients with SLE compared with HCs, patients with RA and patients with pSS. In a comparison between patients with SLE and HCs included in the first validation cohort, Site1 methylation had a sensitivity of 93.6% and a specificity of 96.8% at a cut-off methylation level of 75.5% and Site2 methylation had a sensitivity of 94.1% and a specificity of 98.2% at a cut-off methylation level of 25.5%. The IFI44L promoter methylation marker was also validated in an European-derived cohort. In addition, the methylation levels of Site1 and Site2 within IFI44L promoter were significantly lower in patients with SLE with renal damage than those without renal damage. Patients with SLE showed significantly increased methylation levels of Site1 and Site2 during remission compared with active stage.
Conclusions
The methylation level of IFI44L promoter can distinguish patients with SLE from healthy persons and other autoimmune diseases, and is a highly sensitive and specific diagnostic marker for SLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.