It is of great importance to understand the origin of high oxygen-evolving activity of state-of-the-art multimetal oxides/(oxy)hydroxides at atomic level. Herein we report an evident improvement of oxygen evolution reaction activity via incorporating iron and vanadium into nickel hydroxide lattices. X-ray photoelectron/absorption spectroscopies reveal the synergistic interaction between iron/vanadium dopants and nickel in the host matrix, which subtly modulates local coordination environments and electronic structures of the iron/vanadium/nickel cations. Further, in-situ X-ray absorption spectroscopic analyses manifest contraction of metal–oxygen bond lengths in the activated catalyst, with a short vanadium–oxygen bond distance. Density functional theory calculations indicate that the vanadium site of the iron/vanadium co-doped nickel (oxy)hydroxide gives near-optimal binding energies of oxygen evolution reaction intermediates and has lower overpotential compared with nickel and iron sites. These findings suggest that the doped vanadium with distorted geometric and disturbed electronic structures makes crucial contribution to high activity of the trimetallic catalyst.
Graphene oxide potentially has multiple applications. The chemistry of graphene oxide and its response to external stimuli such as temperature and light are not well understood and only approximately controlled. This understanding is crucial to enable future applications of this material. Here, a combined experimental and density functional theory study shows that multilayer graphene oxide produced by oxidizing epitaxial graphene through the Hummers method is a metastable material whose structure and chemistry evolve at room temperature with a characteristic relaxation time of about one month. At the quasi-equilibrium, graphene oxide reaches a nearly stable reduced O/C ratio, and exhibits a structure deprived of epoxide groups and enriched in hydroxyl groups. Our calculations show that the structural and chemical changes are driven by the availability of hydrogen in the oxidized graphitic sheets, which favours the reduction of epoxide groups and the formation of water molecules.
Piezoelectricity is a unique material property that converts mechanical energy into electricity or vice versa. Starting from the group-III monochalcogenide monolayers, we design a series of derivative Janus structures for piezoelectric materials, including Ga2SSe, Ga2STe, Ga2SeTe, In2SSe, In2STe, In2SeTe, GaInS2, GaInSe2, and GaInTe2. Our first-principles calculations show that these Janus structures are thermodynamically and dynamically stable. They have a bandgap in the range of 0.89–2.03 eV, lower than those of the perfect monolayers, and Ga2STe, Ga2SeTe, In2STe, and In2SeTe monolayers are direct gap semiconductors. They possess piezoelectric coefficients up to 8.47 pm/V, over four times the maximum value obtained in perfect group-III monochalcogenide monolayers. Moreover, the broken mirror symmetry of these Janus structures induces out-of-plane dipolar polarization, yielding additional out-of-plane piezoelectric coefficients of 0.07–0.46 pm/V. The enhanced piezoelectric properties enable the development of these novel two-dimensional materials for piezoelectric sensors and nanogenerators.
In the fabrication and processing of silicene monolayers, structural defects are almost inevitable. Using ab initio calculations, we systemically investigated the structures, formation energies, migration behaviors and electronic/magnetic properties of typical point defects in silicene, including the Stone-Wales (SW) defect, single and double vacancies (SVs and DVs), and adatoms. We found that SW can be effectively recovered by thermal annealing. SVs have much higher mobility than DVs and two SVs are very likely to coalesce into one DV to lower the energy. Existence of SW and DVs may induce small gaps in silicene, while the SV defect may transform semimetallic silicene into metallic. Adatoms are unexpectedly stable and can affect the electronic properties of silicene dramatically. Especially, Si adatoms as self-dopants in silicene sheets can induce long-range spin polarization as well as a remarkable band gap, thus achieving an all-silicon magnetic semiconductor. The present theoretical results provide valuable insights into identification of these defects in experiments and understanding their effects on the physical properties of silicene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.