Mosquito microRNAs (miRNAs) are involved in host-virus interaction, and have been reported to be altered by dengue virus (DENV) infection in Aedes albopictus (Diptera: Culicidae). However, little is known about the molecular mechanisms of Aedes albopictus midgut-the first organ to interact with DENV-involved in its resistance to DENV. Here we used high-throughput sequencing to characterize miRNA and messenger RNA (mRNA) expression patterns in Aedes albopictus midgut in response to dengue virus serotype 2. A total of three miRNAs and 777 mRNAs were identified to be differentially expressed upon DENV infection. For the mRNAs, we identified 198 immune-related genes and 31 of them were differentially expressed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses also showed that the differentially expressed immune-related genes were involved in immune response. Then the differential expression patterns of six immune-related genes and three miRNAs were confirmed by real-time reverse transcription polymerase chain reaction. Furthermore, seven known miRNA-mRNA interaction pairs were identified by aligning our two datasets. These analyses of miRNA and mRNA transcriptomes provide valuable information for uncovering the DENV response genes and provide a basis for future study of the resistance mechanisms in Aedes albopictus midgut.
BackgroundToxoplasma gondii is one of the most important apicomplexan parasites and infects one-third of the human population worldwide. Transformation between the tachyzoite and bradyzoite stages in the intermediate host is central to chronic infection and life-long risk. There have been some transcriptome studies on T. gondii; however, we are still early in our understanding of the kinds and levels of gene expression that occur during the conversion between stages.ResultsWe used high-throughput RNA-sequencing data to assemble transcripts using genome-based and de novo strategies. The expression-level analysis of 6996 T. gondii genes showed that over half (3986) were significantly differentially expressed during stage conversion, whereas 2205 genes were upregulated, and 1778 genes were downregulated in tachyzoites compared with bradyzoites. Several important gene families were expressed at relatively high levels. Comprehensive functional annotation and gene ontology analysis revealed that stress response-related genes are important for survival of bradyzoites in immune-competent hosts. We compared Trinity-based de novo and genome-based strategies, and found that the de novo assembly strategy compensated for the defects of the genome-based strategy by filtering out several transcripts with low expression or those unannotated on the genome. We also found some inaccuracies in the ToxoDB gene models. In addition, our analysis revealed that alternative splicing can be differentially regulated in response to life-cycle change. In depth analysis revealed a 20-nt, AG-rich sequence, alternative splicing locus from alt_acceptor motif search in tachyzoite.ConclusionThis study represents the first large-scale effort to sequence the transcriptome of bradyzoites from T. gondii tissue cysts. Our data provide a comparative view of the tachyzoite and bradyzoite transcriptomes to allow a more complete dissection of all the molecular regulation mechanisms during stage conversions. A better understanding of the processes regulating stage conversion may guide targeted interventions to disrupt the transmission of T. gondii.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-2983-5) contains supplementary material, which is available to authorized users.
BackgroundBrain and central nervous system (CNS) cancers represent a major source of cancer burden in China and the United States. Comparing the two countries' epidemiological features for brain and CNS cancers can help plan interventions and draw lessons.MethodsData were extracted from the Global Burden of Disease repository. The average annual percentage change (AAPC) and relative risks of cancer burdens were calculated using joinpoint regression analysis and age-period-cohort (APC) models, respectively. Moreover, a Bayesian APC model was employed to predict the disease burden over the next decade.ResultsFrom 1990 to 2019, the number of incidences, deaths, and disability-adjusted life-years (DALYs) increased in China and the US, with a larger increase in China. Age-standardized incidence rates in China and the United States have shown an increasing trend over the past three decades, with AAPCs of 0.84 and 0.16%, respectively. However, the rates of age-standardized mortality and age-standardized DALYs decreased in both countries, with a greater decrease in China. Overall, age trends in cancer burden were similar for males and females, with two peaks in the childhood and elderly groups, respectively. The period and cohort effects on incidence showed an overall increasing trend in China and limited change in the US. However, the period effects for mortality and DALY were decreasing in both countries, while the cohort effects tended to increase and then decrease. Moreover, we predicted that the cancer burdens would continue to rise in China over the next decade.ConclusionThe burden of brain and CNS cancers is substantial and will continue to increase in China. Comprehensive policy and control measures need to be implemented to reduce the burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.