Pu-erh tea displays cholesterol-lowering properties, but the underlying mechanism has not been elucidated. Theabrownin is one of the most active and abundant pigments in Pu-erh tea. Here, we show that theabrownin alters the gut microbiota in mice and humans, predominantly suppressing microbes associated with bile-salt hydrolase (BSH) activity. Theabrownin increases the levels of ileal conjugated bile acids (BAs) which, in turn, inhibit the intestinal FXR-FGF15 signaling pathway, resulting in increased hepatic production and fecal excretion of BAs, reduced hepatic cholesterol, and decreased lipogenesis. The inhibition of intestinal FXR-FGF15 signaling is accompanied by increased gene expression of enzymes in the alternative BA synthetic pathway, production of hepatic chenodeoxycholic acid, activation of hepatic FXR, and hepatic lipolysis. Our results shed light into the mechanisms behind the cholesterol- and lipid-lowering effects of Pu-erh tea, and suggest that decreased intestinal BSH microbes and/or decreased FXR-FGF15 signaling may be potential anti-hypercholesterolemia and anti-hyperlipidemia therapies.
Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, has resulted thus far in greater than 933,000 deaths worldwide; yet disease pathogenesis remains unclear. Clinical and immunological features of patients with COVID-19 have highlighted a potential role for changes in immune activity in regulating disease severity. However, little is known about the responses in human lung tissue, the primary site of infection. Here we show that pathways related to neutrophil activation and pulmonary fibrosis are among the major up-regulated transcriptional signatures in lung tissue obtained from patients who died of COVID-19 in Wuhan, China. Strikingly, the viral burden was low in all samples, which suggests that the patient deaths may be related to the host response rather than an active fulminant infection. Examination of the colonic transcriptome of these patients suggested that SARS-CoV-2 impacted host responses even at a site with no obvious pathogenesis. Further proteomics analysis validated our transcriptome findings and identified several key proteins, such as the SARS-CoV-2 entry-associated protease cathepsins B and L and the inflammatory response modulator S100A8/A9, that are highly expressed in fatal cases, revealing potential drug targets for COVID-19.
Background: The composition of the bile acid (BA) pool is closely associated with obesity and is modified by gut microbiota. Perturbations of gut microbiota shape the BA composition, which, in turn, may alter important BA signaling and affect host metabolism. Methods: We investigated BA composition of high BMI subjects from a human cohort study and a high fat diet (HFD) obesity prone (HF-OP) / HFD obesity resistant (HF-OR) mice model. Gut microbiota was analysed by metagenomics sequencing. GLP-1 secretion and gene regulation studies involved ELISA, qPCR, Western blot, Immunohistochemistry, and Immunofluorescence staining. Findings: We found that the proportion of non-12-OH BAs was significantly decreased in the unhealthy high BMI subjects. The HF-OR mice had an enhanced level of non-12-OH BAs. Non-12-OH BAs including ursodeoxycholate (UDCA), chenodeoxycholate (CDCA), and lithocholate (LCA) were decreased in the HF-OP mice and associated with altered gut microbiota. Clostridium scindens was decreased in HF-OP mice and had a positive correlation with UDCA and LCA. Gavage of Clostridium scindens in mice increased the levels of hepatic non-12-OH BAs, accompanied by elevated serum 7a-hydroxy-4-cholesten-3-one (C4) levels. In HF-OP mice, altered BA composition was associated with significantly downregulated expression of GLP-1 in ileum and PGC1a, UCP1 in brown adipose tissue. In addition, we identified that UDCA attenuated the high fat dietinduced obesity via enhancing levels of non-12-OH BAs. Interpretation: Our study highlights that dysregulated BA signaling mediated by gut microbiota contributes to obesity susceptibility, suggesting modulation of BAs could be a promising strategy for obesity therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.