Nanomaterials with intrinsic enzyme-like activities, namely "nanozymes," are showing increasing potential as a new type of broad-spectrum antibiotics. However, their feasibility is still far from satisfactory, due to their low catalytic activity, poor bacterial capturing capacity, and complicated material design. Herein, a facile synthesis of a defect-rich adhesive molybdenum disulfide (MoS 2)/rGO vertical heterostructure (VHS) through a one-step microwave-assisted hydrothermal method is reported. This simple, convenient but effective method for rapid material synthesis enables extremely uniform and well-dispersed MoS 2 /rGO VHS with abundant S and Mo vacancies and rough surface, for a performance approaching the requirements of practical application. It is demonstrated experimentally and theoretically that the as-prepared MoS 2 /rGO VHS possesses defect and irradiation dual-enhanced triple enzyme-like activities (oxidase, peroxidase, and catalase) for promoting free-radical generation, owing to much more active edge sites exposure. Meanwhile, the VHS-achieved rough surface exhibits excellent capacity for bacterial capture, with elevated reactive oxygen species (ROS) destruction through local topological interactions. As a result, optimized efficacy against drug-resistant Gram-negative and Gram-positive bacteria can be explored by such defect-rich adhesive nanozymes, demonstrating a simple but powerful way to engineered nanozymes for alternative antibiotics.
Antibacterial photocatalytic therapy has been reported as a promising alternative water disinfection technology for combating antibiotic‐resistant bacteria. Numerous inorganic nanosystems have been developed as antibiotic replacements for bacterial infection treatment, but these are limited due to the toxicity risk of heavy metal species. Organic semiconductor photocatalytic materials have attracted great attention due to their good biocompatibility, chemically tunable electronic structure, diverse structural flexibility, suitable band gap, low cost, and the abundance of the resources they require. An all‐organic composite photocatalytic nanomaterial C3N4/perylene‐3,4,9,10‐tetracarboxylic diimide (PDINH) heterostructure is created through recrystallization of PDINH on the surface of C3N4 in situ, resulting in enhanced photocatalytic efficiency due to the formation of a basal heterostructure. The absorption spectrum of this composite structure can be extended from ultraviolet to near‐infrared light (750 nm), enhancing the photocatalytic effect to produce more reactive oxygen species, which have an excellent inactivation effect on both Gram‐negative and positive bacteria, while demonstrating negligible toxicity to normal tissue cells. An efficient promotion of infectious wound regeneration in mice with Staphylococcus aureus infected dermal wounds is demonstrated. This all‐organic heterostructure shows great promise for use in wound disinfection.
Nanozyme-based catalytic tumor therapyi sa n emerging therapeutic method with high reactivity in response to tumor microenvironments (TMEs). To overcome the current limitations of deficient catalytic activity of nanozymes,w e studied the contributing factors of enzymatic activity based on non-metallic-atom doping and irradiation. Nitrogen doping significantly enhanced the peroxidase activity of Ti-based nanozymes,whichwas shown experimentally and theoretically. Based on the excellent NIR-adsorption-induced surface plasmon resonance and photothermal effect, the enzymatic activity of TiNn anoparticles (NPs) was further improved under NIR laser irradiation. Hence,a na cidic TME-responsive and irradiation-mediated cascade nanocatalyst (TLGp) is presented by using TiN-NP-encapsulated liposomes linked with pHresponsive PEG-modified glucose oxidase (GOx). The integration of pH-responsive GOx-mediated H 2 O 2 self-supply, nitrogen-doping,a nd irradiation-enhanced enzymatic activity of TiNN Ps and mild-photothermal therapye nables an effective tumor inhibition by TLGp with minimal side effects in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.