Engineered conductive scaffolds toward neural regeneration should have the ability to regulate mesenchymal stems cell (MSC) differentiation into neural lineage through an electrical stimulation-assisted culture process. In this work, a self-powered electrical stimulation-assisted neural differentiation system for MSCs was realized by combining a high effective triboelectric nanogenerator (TENG) to supply pulsed electric simulation signals and a poly(3,4-ethylenedioxythiophene) (PEDOT)-reduced graphene oxide (rGO) hybrid microfiber (80 μm in diameter) as a scaffold. The conductive PEDOT endows the rGO-PEDOT hybrid microfiber with an enhanced electrical conductivity and maintains a good cytocompatibility. MSCs cultured on this highly conductive rGO-PEDOT hybrid microfiber possess enhanced proliferation ability and good neural differentiation tendency. Importantly, by inducing electric pulses generated by the TENG as the electrical stimulation signal, which are triggered by human walking steps, neural differentiation of MSCs is dramatically improved. This study illustrates the customizability of the rGO-PEDOT hybrid microfiber for neural tissue engineering scaffolding applications, underlines the potential of a self-powered TENG electrical stimulation system for accelerating MSC differentiation into neural cells without bio/chemical cues, and suggests the TENG's practical use as a wearable stimulation system to assist nerve regeneration for a walking person.
Recently, surface plasmon resonance (SPR) effects have been widely used to construct photocatalysts which are active in the visible spectral region. Such plasmonic photocatalysts usually comprise a semiconductor material transparent in the visible range (such as TiO2) and plasmonic nano-objects (e.g., Au nanoparticles (Au NPs)). Specific SPRs, though, only partially cover the visible spectrum and feature weak light absorption. Here, we explore the unique role played by whispering gallery mode (WGM) resonances in the expression of the photocatalytic activity of plasmonic photocatalysts. Using numerical simulations, we demonstrate that, by solely exploiting a proper geometrical arrangement and WGM resonances in a TiO2 sphere, the plasmonic absorption can be extended over the entire visible range and can be increased by more than 40 times. Furthermore, the local electric field at the Au-TiO2 interface is also considerably enhanced. These results are experimentally corroborated, by means of absorption spectroscopy and Raman measurements. Accordingly, such WGM-assisted plasmonic photocatalysts, when employed in water splitting experiments, exhibit enhanced activity in the visible range. Our findings show a promising and straightforward way to design full solar spectrum photocatalysts.
Antibacterial photocatalytic therapy has been reported as a promising alternative water disinfection technology for combating antibiotic‐resistant bacteria. Numerous inorganic nanosystems have been developed as antibiotic replacements for bacterial infection treatment, but these are limited due to the toxicity risk of heavy metal species. Organic semiconductor photocatalytic materials have attracted great attention due to their good biocompatibility, chemically tunable electronic structure, diverse structural flexibility, suitable band gap, low cost, and the abundance of the resources they require. An all‐organic composite photocatalytic nanomaterial C3N4/perylene‐3,4,9,10‐tetracarboxylic diimide (PDINH) heterostructure is created through recrystallization of PDINH on the surface of C3N4 in situ, resulting in enhanced photocatalytic efficiency due to the formation of a basal heterostructure. The absorption spectrum of this composite structure can be extended from ultraviolet to near‐infrared light (750 nm), enhancing the photocatalytic effect to produce more reactive oxygen species, which have an excellent inactivation effect on both Gram‐negative and positive bacteria, while demonstrating negligible toxicity to normal tissue cells. An efficient promotion of infectious wound regeneration in mice with Staphylococcus aureus infected dermal wounds is demonstrated. This all‐organic heterostructure shows great promise for use in wound disinfection.
Nanomaterials with intrinsic enzyme-like activities, namely "nanozymes," are showing increasing potential as a new type of broad-spectrum antibiotics. However, their feasibility is still far from satisfactory, due to their low catalytic activity, poor bacterial capturing capacity, and complicated material design. Herein, a facile synthesis of a defect-rich adhesive molybdenum disulfide (MoS 2)/rGO vertical heterostructure (VHS) through a one-step microwave-assisted hydrothermal method is reported. This simple, convenient but effective method for rapid material synthesis enables extremely uniform and well-dispersed MoS 2 /rGO VHS with abundant S and Mo vacancies and rough surface, for a performance approaching the requirements of practical application. It is demonstrated experimentally and theoretically that the as-prepared MoS 2 /rGO VHS possesses defect and irradiation dual-enhanced triple enzyme-like activities (oxidase, peroxidase, and catalase) for promoting free-radical generation, owing to much more active edge sites exposure. Meanwhile, the VHS-achieved rough surface exhibits excellent capacity for bacterial capture, with elevated reactive oxygen species (ROS) destruction through local topological interactions. As a result, optimized efficacy against drug-resistant Gram-negative and Gram-positive bacteria can be explored by such defect-rich adhesive nanozymes, demonstrating a simple but powerful way to engineered nanozymes for alternative antibiotics.
The cell-material interface is one of the most important considerations in designing a high-performance tissue engineering scaffold because the surface of the scaffold can determine the fate of stem cells. A conductive surface is required for a scaffold to direct stem cells toward neural differentiation. However, most conductive polymers are toxic and not amenable to biological degradation, which restricts the design of neural tissue engineering scaffolds. In this study, we used a bioactive three-dimensional (3D) porcine acellular dermal matrix (PADM), which is mainly composed of type I collagen, as a basic material and successfully assembled a layer of reduced graphene oxide (rGO) nanosheets on the surface of the PADM channels to obtain a porous 3D, biodegradable, conductive and biocompatible PADM-rGO hybrid neural tissue engineering scaffold. Compared with the PADM scaffold, assembling the rGO into the scaffold did not induce a significant change in the microstructure but endowed the PADM-rGO hybrid scaffold with good conductivity. A comparison of the neural differentiation of rat bone-marrow-derived mesenchymal stem cells (MSCs) was performed by culturing the MSCs on PADM and PADM-rGO scaffolds in neuronal culture medium, followed by the determination of gene expression and immunofluorescence staining. The results of both the gene expression and protein level assessments suggest that the rGO-assembled PADM scaffold may promote the differentiation of MSCs into neuronal cells with higher protein and gene expression levels after 7 days under neural differentiation conditions. This study demonstrated that the PADM-rGO hybrid scaffold is a promising scaffold for neural tissue engineering; this scaffold can not only support the growth of MSCs at a high proliferation rate but also enhance the differentiation of MSCs into neural cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.