Rice lodging severely affects harvest yield. Traditional evaluation methods and manual on-site measurement are found to be time-consuming, labor-intensive, and cost-intensive. In this study, a new method for rice lodging assessment based on a deep learning UNet (U-shaped Network) architecture was proposed. The UAV (unmanned aerial vehicle) equipped with a high-resolution digital camera and a three-band multispectral camera synchronously was used to collect lodged and non-lodged rice images at an altitude of 100 m. After splicing and cropping the original images, the datasets with the lodged and non-lodged rice image samples were established by augmenting for building a UNet model. The research results showed that the dice coefficients in RGB (Red, Green and Blue) image and multispectral image test set were 0.9442 and 0.9284, respectively. The rice lodging recognition effect using the RGB images without feature extraction is better than that of multispectral images. The findings of this study are useful for rice lodging investigations by different optical sensors, which can provide an important method for large-area, high-efficiency, and low-cost rice lodging monitoring research.
Accurate detection of weeds in farmland can help reduce pesticide use and protect the agricultural environment. To develop intelligent equipment for weed detection, this study used an imaging spectrometer system, which supports micro-scale plant feature analysis by acquiring high-resolution hyper spectral images of corn and a number of weed species in the laboratory. For the analysis, the object-oriented classification system with segmentation and decision tree algorithms was utilized on the hyper spectral images to extract shape and texture features of eight species of plant leaves, and then, the spectral identification characteristics of different species were determined through sensitive waveband selection and using vegetation indices calculated from the sensitive band data of the images. On the basis of the comparison and analysis of the combined characteristics of spectra, shape, and texture, it was determined that the spectral characteristics of the ratio vegetation index of R677/R710 and the normalized difference vegetation index, shape features of shape index, area, and length, as well as the texture feature of the entropy index could be used to build a discrimination model for corn and weed species. Results of the model evaluation showed that the Global Accuracy and the Kappa coefficient of the model were both over 95%. In addition, spectral and shape features can be regarded as the preferred characteristics to develop a device of weed identification from the view of accessibility to crop/weeds discriminant features, according to different roles of various features in classifying plants. Therefore, the results of this study provide valuable information for the portable device development of intelligent weed detection.
Abstract:In recent years, different space agencies have launched satellite missions that carry passive microwave instruments on-board that can measure surface soil moisture. Three currently operational missions are the Soil Moisture and Ocean Salinity (SMOS) mission developed by the European Space Agency (ESA), the Advanced Microwave Scanning Radiometer 2 (AMSR2) developed by the Japan Aerospace Exploration Agency (JAXA), and the Microwave Radiation Imager (MWRI) from China's National Satellite Meteorological Centre (NSMC). In this study, the quality of surface soil moisture anomalies derived from these passive microwave instruments was sequentially assessed over the mainland of the People's Republic of China. First, the impact of a recent update in the Land Parameter Retrieval Model (LPRM) was assessed for MWRI observations. Then, the soil moisture measurements retrieved from the X-band observations of MWRI were compared with those of AMSR2, followed by an internal comparison of the multiple frequencies of AMSR2. Finally, SMOS retrievals from two different algorithms were also included in the comparison. For each sequential step, processing and verification chains were specifically designed to isolate the impact of algorithm (version), observation frequency or instrument characteristics. Two verification techniques are used: the statistical Triple Collocation technique is used as the primary verification tool, while the precipitation-based R value technique is used to confirm key results. Our results indicate a consistently better performance throughout the entire study area after the implementation of an update of the LPRM. We also find that passive microwave observations in the AMSR2 C-band frequency (6.9 GHz) have an advantage over the AMSR2 X-band frequency (10.7 GHz) over moderate to densely vegetated regions. This finding is in line with theoretical expectations as emitted soil radiation will become masked under a dense canopy with stricter thresholds for higher passive microwave frequencies. Both AMSR2 and MWRI make X-band observations; a direct comparison between them reveals a consistently higher quality obtained by AMSR2, specifically over semi-arid climate regimes. Unfortunately, Radio Frequency Interference hampers the usefulness of soil moisture products for the SMOS L-band mission, leading to a significantly reduced revisit time over the densely populated eastern part of the country. Nevertheless, our analysis demonstrates that soil moisture products from a number of multi-frequency microwave sensors are credible alternatives for this dedicated L-band mission over the mainland of the People's Republic of China.
This theoretical perspective paper interprets (un) known-(un) known risk quadrants as formed from abstract and concrete risk knowledge. It presents these quadrants as useful, both for categorising risk forecasting challenges against levels of abstract and concrete risk knowledge typically available, and for psychometric research measuring perceived levels of abstract and concrete risk knowledge available for forecasting. Drawing on some cybersecurity risk examples, a case is made for refocusing risk management forecasting effort towards raising unknown-unknowns into known-knowns. We propose achieving this by developing the 'boosted risk radar' as organisational practice where suitably 'risk intelligent' managers gather 'risk intelligence information', such that the 'risk intelligent organisation' can purposefully co-develop both abstract and concrete risk forecasting knowledge. We illustrate what this can entail in simple practice terms within organisations.
Fusarium head blight (FHB) is a major disease threatening worldwide wheat production. FHB is a short cycle disease and is highly destructive under conducive environments. To provide technical support for the rapid detection of the FHB disease, we proposed to develop a new Fusarium disease index (FDI) based on the spectral data of 374–1050 nm. This study was conducted through the analysis of reflectance spectral data of healthy and diseased wheat ears at the flowering and filling stages by hyperspectral imaging technology and the random forest method. The characteristic wavelengths selected were 570 nm and 678 nm for the late flowering stage, 565 nm and 661 nm for the early filling stage, 560 nm and 663 nm for the combined stage (combining both flowering and filling stages) by random forest. FDI at each stage was derived from the wavebands of each corresponding stage. Compared with other 16 existing spectral indices, FDI demonstrated a stronger ability to determine the severity of the FHB disease. Its determination coefficients (R2) values exceeded 0.90 and the RMSEs were less than 0.08 in the models for each stage. Furthermore, the model for the combined stage performed better when used at single growth stage, but its effect was weaker than that of the models for the two individual growth stages. Therefore, using FDI can provide a new tool to detect the FHB disease at different growth stages in wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.