Ferroptosis is a new type of cell death that was discovered in recent years and is usually accompanied by a large amount of iron accumulation and lipid peroxidation during the cell death process; the occurrence of ferroptosis is iron-dependent. Ferroptosis-inducing factors can directly or indirectly affect glutathione peroxidase through different pathways, resulting in a decrease in antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in cells, ultimately leading to oxidative cell death. Recent studies have shown that ferroptosis is closely related to the pathophysiological processes of many diseases, such as tumors, nervous system diseases, ischemia-reperfusion injury, kidney injury, and blood diseases. How to intervene in the occurrence and development of related diseases by regulating cell ferroptosis has become a hotspot and focus of etiological research and treatment, but the functional changes and specific molecular mechanisms of ferroptosis still need to be further explored. This paper systematically summarizes the latest progress in ferroptosis research, with a focus on providing references for further understanding of its pathogenesis and for proposing new targets for the treatment of related diseases. Facts Ferroptosis is a new type of programmed cell death, which occurs with iron dependence. Ferroptosis plays an important regulatory role in the occurrence and development of many diseases, such as tumors, neurological diseases, acute kidney injury, ischemia/reperfusion, etc. Activating or blocking the ferroptosis pathway to alleviate the progression of the disease, which provides a promising therapeutic strategy for many diseases. Open questions What is the relationship between ferroptosis and other types of cell death? Is it synergy or antagonism? Is iron necessary to promote the production of lipid peroxides, or can other substances take the place of iron in ferroptosis? What is the downstream regulation mechanism of iron in ferroptosis? How can ferroptosis promote the development of inflammation?
Background-Recent studies have shown that stem cell therapy can promote tissue regeneration; however, monitoring stem cells in vivo remains problematic owing to limitations of conventional histological assays and imaging modalities. Methods and Results-Murine embryonic stem (ES) cells were stably transduced with a lentiviral vector carrying a novel triple-fusion (TF) reporter gene that consists of firefly luciferase, monomeric red fluorescence protein, and truncated thymidine kinase (fluc-mrfp-ttk). ES cell viability, proliferation, and differentiation ability were not adversely affected by either reporter genes or reporter probes compared with nontransduced control cells (PϭNS). Afterward, 1ϫ10 7 of ES cells carrying the TF reporter gene (ES-TF) were injected into the myocardium of adult nude rats (nϭ20). Control animals received nontransduced ES cells (nϭ6). At day 4, the bioluminescence and positron emission tomography signals in study animals were 3.7ϫ10 7 Ϯ5.8ϫ10 6 photons · s Ϫ1 · cm Ϫ2 per steradian (sr) and 0.08Ϯ0.03% injected dose/g, respectively (PϽ0.05 versus control). Both signals increased progressively from week 1 to week 4, which indicated ES cell survival and proliferation in the host. Histological analysis demonstrated the formation of intracardiac and extracardiac teratomas. Finally, animals (nϭ4) that were treated with intraperitoneal injection of ganciclovir (50 mg/kg) did not develop teratomas when compared with control animals (nϭ4) treated with saline (1 mL/kg). Conclusion-This is the first study to characterize ES cells that stably express fluorescence, bioluminescence, and positron emission tomography reporter genes and monitor the kinetics of ES cell survival, proliferation, and migration. This versatile imaging platform should have broad applications for basic research and clinical studies on stem cell therapy.
The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin‐treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP‐activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin‐related protein 1 (Drp1)‐dependent mitochondrial fission, which subsequently induced voltage‐dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy‐mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p‐Drp1S616 downregulation and p‐Drp1S37 upregulation, which blunted Drp1‐dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1‐HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy‐mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission‐VDAC1‐HK2‐mPTP‐mitophagy axis via activation of AMPKα.
In particular, hESCECs showed significant bioluminescence signals at day 2, which decreased progressively over the following 4 weeks, whereas bioluminescence signals from undifferentiated hES cells increased dramatically during the same period. Postmortem histology and immunohistochemistry confirmed teratoma formation after injection of undifferentiated hES cells but not hESC-ECs. From these data taken together, we concluded that reporter gene is a better marker for monitoring cell viability, whereas iron particle labeling is a better marker for high-resolution detection of cell location by MR. Furthermore, transplantation of predifferentiated rather than undifferentiated hES cells would be more suited for avoiding teratoma formation. STEM CELLS 2008;26:864 -873 Disclosure of potential conflicts of interest is found at the end of this article.
Given their self-renewing and pluripotent capabilities, human embryonic stem cells (hESCs) are well poised as a cellular source for tissue regeneration therapy. However, the host immune response against transplanted hESCs is not well characterized. In fact, controversy remains as to whether hESCs have immune-privileged properties. To address this issue, we used in vivo bioluminescent imaging to track the fate of transplanted hESCs stably transduced with a double-fusion reporter gene consisting of firefly luciferase and enhanced GFP. We show that survival after transplant is significantly limited in immunocompetent as opposed to immunodeficient mice. Repeated transplantation of hESCs into immunocompetent hosts results in accelerated hESC death, suggesting an adaptive donor-specific immune response. Our data demonstrate that transplanted hESCs trigger robust cellular and humoral immune responses, resulting in intragraft infiltration of inflammatory cells and subsequent hESC rejection. Moreover, we have found CD4 ؉ T cells to be an important modulator of hESC immunemediated rejection. Finally, we show that immunosuppressive drug regimens can mitigate the anti-hESC immune response and that a regimen of combined tacrolimus and sirolimus therapies significantly prolongs survival of hESCs for up to 28 days. Taken together, these data suggest that hESCs are immunogenic, trigger both cellular and humoral-mediated pathways, and, as a result, are rapidly rejected in xenogeneic hosts. This process can be mitigated by a combined immunosuppressive regimen as assessed by molecular imaging approaches. molecular imaging ͉ immunological response ͉ immunosuppression
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.