Ferroptosis is a new type of cell death that was discovered in recent years and is usually accompanied by a large amount of iron accumulation and lipid peroxidation during the cell death process; the occurrence of ferroptosis is iron-dependent. Ferroptosis-inducing factors can directly or indirectly affect glutathione peroxidase through different pathways, resulting in a decrease in antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in cells, ultimately leading to oxidative cell death. Recent studies have shown that ferroptosis is closely related to the pathophysiological processes of many diseases, such as tumors, nervous system diseases, ischemia-reperfusion injury, kidney injury, and blood diseases. How to intervene in the occurrence and development of related diseases by regulating cell ferroptosis has become a hotspot and focus of etiological research and treatment, but the functional changes and specific molecular mechanisms of ferroptosis still need to be further explored. This paper systematically summarizes the latest progress in ferroptosis research, with a focus on providing references for further understanding of its pathogenesis and for proposing new targets for the treatment of related diseases. Facts Ferroptosis is a new type of programmed cell death, which occurs with iron dependence. Ferroptosis plays an important regulatory role in the occurrence and development of many diseases, such as tumors, neurological diseases, acute kidney injury, ischemia/reperfusion, etc. Activating or blocking the ferroptosis pathway to alleviate the progression of the disease, which provides a promising therapeutic strategy for many diseases. Open questions What is the relationship between ferroptosis and other types of cell death? Is it synergy or antagonism? Is iron necessary to promote the production of lipid peroxides, or can other substances take the place of iron in ferroptosis? What is the downstream regulation mechanism of iron in ferroptosis? How can ferroptosis promote the development of inflammation?
Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.
We have previously shown that tumor necrosis factor (TNF)-induced desumoylation and subsequent cytoplasmic translocation of HIPK1 are critical for ASK1-JNK activation. However, the mechanism by which TNF induces desumoylation of HIPK1 is unclear. Here, we show that SENP1, a SUMO-specific protease, specifically deconjugates SUMO from HIPK1 in vitro and in vivo. In resting endothelial cells (ECs), SENP1 is localized in the cytoplasm where it is complexed with an antioxidant protein thioredoxin. TNF induces the release of SENP1 from thioredoxin as well as nuclear translocation of SENP1. TNF-induced SENP1 nuclear translocation is specifically blocked by antioxidants such as N-acetyl-cysteine, suggesting that TNF-induced translocation of SENP1 is ROS dependent. TNF-induced nuclear import of SENP1 kinetically correlates with HIPK1 desumoylation and cytoplasmic translocation. Furthermore, the wild-type form of SENP1 enhances, whereas the catalyticinactive mutant form or siRNA of SENP1 blocks, TNF-induced desumoylation and cytoplasmic translocation of HIPK1 as well as TNF-induced ASK1-JNK activation. More importantly, these critical functions of SENP1 in TNF signaling were further confirmed in mouse embryonic fibroblast cells derived from SENP1-knockout mice. We conclude that SENP1 mediates TNF-induced desumoylation and translocation of HIPK1, leading to an enhanced ASK1-dependent apoptosis. The small ubiquitin-like modifier (SUMO) can be covalently attached to a large number of proteins through the formation of isopeptide bonds with specific lysine residues of target proteins. 1,2 A large number of sumoylated proteins, including RanGAP1, PML, homeodomain-interacting protein kinases (HIPKs), IkB, p53, c-Jun, Sp3, Elk-1, p300 histone acetyltransferase, histone deacetylase (HDAC), and many nuclear receptors, have been identified. 1-3 Sumoylation is a dynamic process that is mediated by activating, conjugating, and ligating enzymes and that is readily reversed by a family of SUMO-specific proteases. 4 Several members of SUMOspecific proteases have been reported in the mammalian system. 5-10 SENP1 is a protease that appears to deconjugate a large number of sumoylated proteins. 5 Different members of these SUMO-specific proteases appear to localize in different cellular compartments where they regulate protein function by modifying the protein stability, cellular localization, and protein-protein interactions. 5,6,[8][9][10][11][12] However, it is not known how these SUMO-specific proteases are regulated.HIPK1 is one of three closely related serine/threonine protein kinases that are primarily localized in the nucleus where it is sumoylated. 13,14 The HIPKs were originally identified as nuclear protein kinases that function as co-repressors for various homeodomain-containing transcription factors. 15 Recently, HIPKs have been shown to interact with other proteins involved in apoptosis and signal transduction in a cellular localization-dependent manner. In nucleus, HIPK2 phosphorylates p53 on Ser 46, resulting in the activatio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.