We conducted a detailed analysis of duplicate genes in three complete genomes: yeast, Drosophila, and Caenorhabditis elegans. For two proteins belonging to the same family we used the criteria: (1) their similarity is > or =I (I = 30% if L > or = 150 a.a. and I = 0.01n + 4.8L(-0.32(1 + exp(-L/1000))) if L < 150 a.a., where n = 6 and L is the length of the alignable region), and (2) the length of the alignable region between the two sequences is > or = 80% of the longer protein. We found it very important to delete isoforms (caused by alternative splicing), same genes with different names, and proteins derived from repetitive elements. We estimated that there were 530, 674, and 1,219 protein families in yeast, Drosophila, and C. elegans, respectively, so, as expected, yeast has the smallest number of duplicate genes. However, for the duplicate pairs with the number of substitutions per synonymous site (K(S)) < 0.01, Drosophila has only seven pairs, whereas yeast has 58 pairs and nematode has 153 pairs. After considering the possible effects of codon usage bias and gene conversion, these numbers became 6, 55, and 147, respectively. Thus, Drosophila appears to have much fewer young duplicate genes than do yeast and nematode. The larger numbers of duplicate pairs with K(S) < 0.01 in yeast and C. elegans were probably largely caused by block duplications. At any rate, it is clear that the genome of Drosophila melanogaster has undergone few gene duplications in the recent past and has much fewer gene families than C. elegans.
BackgroundMetabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem.ResultsHere, we describe a community-driven effort, in which more than 20 experts in S. Typhimurium biology and systems biology collaborated to reconcile and expand the S. Typhimurium BiGG knowledge-base. The consensus MR was obtained starting from two independently developed MRs for S. Typhimurium. Key results of this reconstruction jamboree include i) development and implementation of a community-based workflow for MR annotation and reconciliation; ii) incorporation of thermodynamic information; and iii) use of the consensus MR to identify potential multi-target drug therapy approaches.ConclusionTaken together, with the growing number of parallel MRs a structured, community-driven approach will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation.
Therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs, such as gefitinib or erlotinib) significantly prolongs survival time for patients with tumors harboring an activated mutation on EGFR; however, up to 40% of lung cancer patients exhibit acquired resistance to EGFR-TKIs with an unknown mechanism. FOXO3a, a transcription factor of the forkhead family, triggers apoptosis, but the mechanistic details involved in EGFR-TKI resistance and cancer stemness remain largely unclear. Here, we observed that a high level of FOXO3a was correlated with EGFR mutation-independent EGFR-TKI sensitivity, the suppression of cancer stemness, and better progression-free survival in lung cancer patients. The suppression of FOXO3a obviously increased gefitinib resistance and enhanced the stem-like properties of lung cancer cells; consistent overexpression of FOXO3a in gefitinib-resistant lung cancer cells reduced these effects. Moreover, we identified that miR-155 targeted the 3′UTR of FOXO3a and was transcriptionally regulated by NF-κB, leading to repressed FOXO3a expression and increased gefitinib resistance, as well as enhanced cancer stemness of lung cancer in vitro and in vivo. Our findings indicate that FOXO3a is a significant factor in EGFR mutation-independent gefitinib resistance and the stemness of lung cancer, and suggest that targeting the NF-κB/miR-155/FOXO3a pathway has potential therapeutic value in lung cancer with the acquisition of resistance to EGFR-TKIs.
It has been suggested that insertions and deletions (indels) have contributed to the sequence divergence between the human and chimpanzee genomes more than do nucleotide changes (3% vs. 1.2%). However, although there have been studies of large indels between the two genomes, no systematic analysis of small indels (i.e., indels Յ 100 bp) has been published. In this study, we first estimated that the false-positive rate of small indels inferred from human-chimpanzee pairwise sequence alignments is quite high, suggesting that the chimpanzee genome draft is not sufficiently accurate for our purpose. We have therefore inferred only human-specific indels using multiple sequence alignments of mammalian genomes. We identified >840,000 "small" indels, which affect >7000 UCSC-annotated human genes (>11,000 transcripts). These indels, however, amount to only ∼0.21% sequence change in the human lineage for the regions compared, whereas in pseudogenes indels contribute to a sequence divergence of 1.40%, suggesting that most of the indels that occurred in genic regions have been eliminated. Functional analysis reveals that the genes whose coding exons have been affected by human-specific indels are enriched in transcription and translation regulatory activities but are underrepresented in catalytic and transporter activities, cellular and physiological processes, and extracellular region/matrix. This functional bias suggests that human-specific indels might have contributed to human unique traits by causing changes at the RNA and protein level.[Supplemental material is available online at www.genome.org.]The recent publication of the chimpanzee genome draft (The Chimpanzee Genome Sequencing and Analysis Consortium [TCGSAC] 2005) has brought unprecedented opportunities for investigating the genetic basis of the morphological and behavior differences between human and chimpanzee, human's closest relative. Three molecular mechanisms have been proposed to explain human-specific traits: amino acid substitutions, exon deletions, and substitutions in regulatory regions (Li and Saunders 2005). The TCGSAC draft confirmed the previously estimated ∼1.2% Homo-Pan divergence due to nucleotide substitution (Chen and Li 2001;Ebersberger et al. 2002;Clark et al. 2003;Frazer et al. 2003;Watanabe et al. 2004). The nucleotide substitutions in coding exons result in an average of two amino acid substitutions, one per lineage, between Homo-Pan orthologous genes. Although recent studies (Clark et al. 2003;Nielsen et al. 2005) suggested that certain functional categories of genes show evidence of positive selection in the human lineage, the implicated genes did not appear to be directly related to human unique traits. Moreover, the relationship between promoter region divergence and expression divergence between human and chimpanzee remains unclear (Heissig et al. 2005), although there is substantial expression divergence between the two species (Marvanova et al. 2003;Khaitovich et al. 2005).To have a better understanding of the genetic difference...
There has been a controversy on whether alternatively spliced exons (ASEs) evolve faster than constitutively spliced exons (CSEs). Although it has been noted that ASEs are subject to weaker selective constraints than CSEs, so they evolve faster, there have also been studies that indicated slower evolution in ASEs than in CSEs. In this study, we retrieve more than 5,000 human-mouse orthologous exons and calculate the synonymous (KS) and nonsynonymous (KA) substitution rates in these exons. Our results show that ASEs have higher KA values and higher KA/KS ratios than CSEs, indicating faster amino acid-level evolution in ASEs. The faster evolution may be in part due to weaker selective constraints. It is also possible that the faster rate is in part due to faster functional evolution in ASEs. On the other hand, the majority of ASEs have lower KS values than CSEs. With reference to the substitution rate in introns, we show that the KS values in ASEs are close to the neutral substitution rate, whereas the synonymous substitution rate in CSEs has likely been accelerated. The elevated synonymous rate in CSEs is not related to CpG dinucleotides or low-complexity regions of protein but may be weakly related to codon usage bias. The overall trends of higher KA and lower KS in ASEs than in CSEs are also observed in human-rat and mouse-rat comparisons. Therefore, our observations hold for mammals of different molecular clocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.