Angiogenesis, a key step in many physiological and pathological processes, involves proteolysis of the extracellular matrix. To study the role of two enzymatic families, serineproteases and matrix metalloproteases in angiogenesis, we have adapted to the mouse, the aortic ring assay initially developed in the rat. The use of deficient mice allowed us to demonstrate that PAI-1 is essential for angiogenesis while the absence of an MMP, MMP-11, did not affect vessel sprouting. We report here that this model is attractive to elucidate the cellular and molecular mechanisms of angiogenesis, to identify, characterise or screen "pro-or anti-angiogenic agents that could be used for the treatment of angiogenesis-dependent diseases. Approaches include using recombinant proteins, synthetic molecules and adenovirus-mediated gene transfer.
Osteoporosis is one of the most common bone pathologies. A number of novel molecules have been reported to increase bone formation including cysteine-rich protein 61 (CYR61), a ligand of integrin receptor, but mechanisms remain unclear. It is known that bone morphogenetic proteins (BMPs), especially BMP-2, are crucial regulators of osteogenesis. However, the interaction between CYR61 and BMP-2 is unclear. We found that CYR61 significantly increases proliferation and osteoblastic differentiation in MC3T3-E1 osteoblasts and primary cultured osteoblasts. CYR61 enhances mRNA and protein expression of BMP-2 in a time-and dose-dependent manner. Moreover, CYR61-mediated proliferation and osteoblastic differentiation are significantly decreased by knockdown of BMP-2 expression or inhibition of BMP-2 activity. In this study we found integrin ␣ v  3 is critical for CYR61-mediated BMP-2 expression and osteoblastic differentiation. We also found that integrin-linked kinase, which is downstream of the ␣ v  3 receptor, is involved in CYR61-induced BMP-2 expression and subsequent osteoblastic differentiation through an ERK-dependent pathway. Taken together, our results show that CYR61 up-regulates BMP-2 mRNA and protein expression, resulting in enhanced cell proliferation and osteoblastic differentiation through activation of the ␣ v  3 integrin/integrin-linked kinase/ ERK signaling pathway.Bone is a mineralized tissue that underlies multiple mechanical and metabolic functions of the skeleton (1). Bone functions include maintaining blood calcium levels, providing mechanical support to soft tissues and serving as levers for muscle action, supporting hematopoiesis, and housing the brain and spinal cord (2). Formation and maintenance of bone tissue are regulated in a sophisticated fashion by boneforming osteoblasts and bone-resorbing osteoclasts (3). Development and differentiation of these two cell types are under tight regulation by a number of endogenous substances such as hormones, growth factors, and cytokines (4). These factors are individually secreted through endocrine, paracrine/autocrine, and neurocrine systems, with subsequent interaction essential to the delicate balance between bone-forming and -resorbing cells in the marrow microenvironment. An imbalance between the two cell types leads to pathogenesis of certain bone diseases including osteopetrosis and osteoporosis (5, 6).Osteoporosis is the most common human metabolic bone disorder characterized by progressive and age-dependent bone loss and increasing bone fracture risk. It is an important public health issue in postmenopausal women; if untreated, more than half of white women will experience fractures during their lifetime. Between 30 and 50% of women and 15-30% of men will suffer a fracture related to osteoporosis in their lifetime (7). Fractures increase morbidity and mortality and impose a financial burden on the community (8). A most compelling therapeutic need for osteoporosis at the present time is a drug that will substantially increase bone formation...
Thermotolerance is a polygenic trait that contributes to cell survival and growth under unusually high temperatures. Although some genes associated with high-temperature growth (Htg+) have been identified, how cells accumulate mutations to achieve prolonged thermotolerance is still mysterious. Here, we conducted experimental evolution of a Saccharomyces cerevisiae laboratory strain with stepwise temperature increases for it to grow at 42 °C. Whole genome resequencing of 14 evolved strains and the parental strain revealed a total of 153 mutations in the evolved strains, including single nucleotide variants, small INDELs, and segmental duplication/deletion events. Some mutations persisted from an intermediate temperature to 42 °C, so they might be Htg+ mutations. Functional categorization of mutations revealed enrichment of exonic mutations in the SWI/SNF complex and F-type ATPase, pointing to their involvement in high-temperature tolerance. In addition, multiple mutations were found in a general stress-associated signal transduction network consisting of Hog1 mediated pathway, RAS-cAMP pathway, and Rho1-Pkc1 mediated cell wall integrity pathway, implying that cells can achieve Htg+ partly through modifying existing stress regulatory mechanisms. Using pooled segregant analysis of five Htg+ phenotype-orientated pools, we inferred causative mutations for growth at 42 °C and identified those mutations with stronger impacts on the phenotype. Finally, we experimentally validated a number of the candidate Htg+ mutations. This study increased our understanding of the genetic basis of yeast tolerance to high temperature.
The results of this study provide evidence that inhibitory rTMS, through downregulating the circuitry of the right pars triangularis (PTr), achieves a persistent and broadly modulating effect, irrespective of aphasia severity and subtype. Patients who show lower rMT in the right motor system would seem to benefit the most from inhibitory rTMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.