The serine-threonine kinase Akt, also known as protein kinase B (PKB), is an important effector for phosphatidylinositol 3-kinase signaling initiated by numerous growth factors and hormones. ؊/؊ mice demonstrated defects in both fetal and postnatal growth, and these persisted into adulthood. However, in striking contrast to Akt2/PKB null mice, Akt1/PKB␣-deficient mice are normal with regard to glucose tolerance and insulin-stimulated disposal of blood glucose. Thus, the characterization of the Akt1 knockout mice and its comparison to the previously reported Akt2 deficiency phenotype reveals the non-redundant functions of Akt1 and Akt2 genes with respect to organismal growth and insulin-regulated glucose metabolism.
The secreted phosphoprotein osteopontin (OPN), when immobilized on a surface, supports cell adhesion, prevents apoptosis of endothelial cells, and is a ligand for the ␣ v  3 integrin, which is important in endothelial cell biology and neovascularization. OPN synthesized by tumor cells stimulates tumor growth, but the mechanism by which the protein acts remains unclear. One possibility, therefore, is that OPN may exert its effects on tumor growth by enhancing angiogenesis. While OPN is found at high levels in bone, where it is a component of the mineralized matrix, we have asked here whether OPN present in tumors is similarly extracellular matrix associated. We have shown that OPN is detectable in tumor extracts and in serum of tumor-bearing mice, and that the protein in tumors and in serum can be synthesized by both tumor and the host cells. Biochemical fractionation of tumor tissue confirmed that there is little if any association of OPN with the insoluble fraction. Immunochemical analysis of murine mammary tumors shows no co-localization of OPN with the extracellular matrix, identified by laminin staining. Ras-transformed cells in culture produce abundant OPN, however, the protein was found to be associated with the cell fraction but not with the matrix fraction. An enzyme-linked immunosorbent assay was used to demonstrate that OPN in conditioned medium from these cells fails to associate with extracellular matrix components, including laminin and fibronectin, in vitro. Recombinant OPN (GST-OPN) when coated onto a plastic surface can support human umbilical vein endothelial cell adhesion, suppressing apoptosis and allowing cell cycle progression, at concentrations from 1 to 50 g/ml. Soluble GST-OPN in the same concentration range has no effect on HUVECs held in suspension. Thus, we conclude that OPN associated with tumors is primarily soluble, and that soluble OPN can neither support endothelial cell proliferation nor prevent apoptosis of these cells in the absence of adhesion.
Adiponectin is a cytokine produced predominantly by adipose tissue and correlates with glucose and lipid homeostasis. However, the effects of adiponectin on endoplasmic reticulum (ER) stress and apoptosis of adipose tissue remain elusive. In this study, we found that tunicamycin-induced ER stress increased serum free fatty acid (FFA) and impaired glucose tolerance, elevated the mRNA levels of GRP78, Chop, ATF2 and caspase 3, but reduced adiponectin mRNA level in white adipose tissue. Moreover, ER stress-triggered adipocyte apoptosis by increasing cellular FFA level and Ca2+ level. Further analysis revealed that adiponectin alleviated ER stress-induced adipocyte apoptosis by elevating peroxisome proliferator-activated receptor alpha (PPARα) mRNA level. Our data also confirmed that adiponectin reduced early apoptotic cells and blocked the mitochondrial apoptosis pathway by activating the AdipoR1/AMP-activated protein kinase (AMPK) signal pathway. In addition, PPARα bound to ATF2 promoter region and inhibited transcription of ATF2. The inhibition of adipocyte apoptosis by adiponectin was correlated with transcriptional suppression of ATF2. Furthermore, adiponectin inhibited ER stress-induced apoptosis by activating the AMPK/PKC pathway. In summary, our data demonstrate adiponectin inhibited ER stress and apoptosis of adipocyte in vivo and in vitro by activating the AMPK/PPARα/ATF2 pathway. Our study establishes that adiponectin is an important adipocytokine for preventing and treating obesity.
Sirtuin 1 (Sirt1) promotes adaptive thermogenesis by controlling the acetylation status of enzymes and transcriptional factors in interscapular brown adipose tissue (iBAT). However, the effects of Sirt1 on endoplasmic reticulum (ER) stress and apoptosis of iBAT remain elusive. In this study, the mRNA levels of Sirt1 and thermogenesis genes were reduced but the genes related with ER stress were elevated in iBAT of high-fat diet (HFD)-induced obese mice. Moreover, ER stress further inhibited mRNA level of Sirt1 and triggered brown adipocyte apoptosis in vitro and in vivo. Further analysis revealed that Sirt1 overexpression alleviated ER stress-induced brown adipocyte apoptosis by inhibiting Smad3 and ATF4. In addition, Smad3 bound to ATF4 promoter region and positively transcriptional regulation of ATF4. Our data also confirmed that Sirt1 reduced early apoptotic cells and blocked the mitochondrial apoptosis pathway by directly interacting with ATF4. Furthermore, Sirt1 attenuated tunicamycin-induced cold intolerance and elevating thermogenesis by inhibiting ER stress and apoptosis in iBAT. In summary, our data collectively revealed Sirt1 reduced ER stress and apoptosis of brown adipocyte in vivo and in vitro by inhibiting Smad3/ATF4 signal. These data reveal a novel mechanism that links Sirt1 to brown adipocyte apoptosis.
Intracranial bleeding is one of the most severe medical emergencies in neurosurgery. Early detection or diagnosis would largely reduce the rate of disability and mortality, and improve the prognosis of the patients. Electrical Impedance Tomography (EIT) can non-invasively image the internal resistivity distribution within a human body using a ring of external electrodes, and is thus a promising technique to promptly detect the occurrence of intracranial bleedings because blood differs from other brain tissues in resistivity. However, so far there is no experimental study that has determined whether the intracranial resistivity changes in humans could be repeatedly detected and imaged by EIT. Hence, we for the first time attempt to clinically validate this by in vivo imaging the influx and efflux of irrigating fluid (5% dextrose in water, D5W) during the twist-drill drainage operation for the patients with subdural hematoma (SDH). In this study, six patients (four male, two female) with subacute or chronic SDH received the surgical operation in order to evacuate the hematoma around subdural region, and EIT measurements were performed simultaneously on each patient’s head. The results showed that the resistivity significantly increased on the corresponding position of EIT images during the influx of D5W and gradually decreased back to baseline during the efflux. In the quantitative analysis, the average resistivity values demonstrated the similar results and had highly linear correlation (R2 = 0.93±0.06) with the injected D5W volumes, as well as the area of the resistivity gain(R2 = 0.94±0.05). In conclusion, it was clinically validated that intracranial resistivity changes in humans were detectable and quantifiable by the EIT method. After further technical improvements, EIT has the great potential of being a routine neuroimaging tool for early detection of intracranial bleedings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.