High-performance aerogel fibers with high porosity, ultralow density and thermal conductivity, and good flexibility are attractive candidates for the next generation of effective thermal insulation, efficient personal thermal management, and other functional applications. However, most previously reported aerogel fibers suffered from either limited working temperatures, weak mechanical properties, or complex manufacturing processes. In the present work, a facile wet-spinning technique combined with freeze-drying was developed to fabricate strong polyimide aerogel fibers (PAFs) based on organo-soluble polyimide. Attributed to the unique "porous core−dense sheath" morphology, the PAFs exhibited excellent mechanical properties with an optimum tensile strength of 265 MPa and an initial modulus of 7.9 GPa at an ultimate elongation of 65%, representing the highest value for aerogel fibers reported so far. Moreover, the PAFs possess high porosity (>80%) and high specific surface area (464 m 2 g −1 ), which render the woven PAF fabrics with excellent thermal insulation properties within a wide temperature range (−190 to 320 °C) and potential applications for thermal insulation under harsh environments. Additionally, a series of functionalized aerogel fibers or their fabrics based on PAFs, including phase-change fabrics with a thermoregulation function and electromagnetic shielding (EMI) textiles with a high EMI SE value, have been successfully fabricated for expanding their potential applications. Overall, this novel aerogel fiber sheds light on a promising direction for developing the next generation of high-performance thermal insulation and multifunctional fibers and textiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.