SUMMARY
Self-renewal of human embryonic stem (ES) cells is promoted by FGF and TGFβ/Activin signaling, and differentiation is promoted by BMP signaling, but how these signals regulate genes critical to the maintenance of pluripotency has been unclear. Using a defined medium, we show here that both TGFβ and FGF signals synergize to inhibit BMP signaling, sustain expression of pluripotency-associated genes such as NANOG, OCT4, and SOX2, and promote long-term undifferentiated proliferation of human ES cells. We also show that both TGFβ- and BMP-responsive SMADs can bind with the NANOG proximal promoter. NANOG promoter activity is enhanced by TGFβ/Activin and FGF signaling, and is decreased by BMP signaling. Mutation of putative SMAD binding elements reduces NANOG promoter activity to basal levels, and makes NANOG unresponsive to BMP and TGFβ signaling. These results suggest that direct binding of TGFβ/Activin-responsive SMADs to the NANOG promoter plays an essential role in sustaining human ES cell self-renewal.
Dengue virus (DENV), a mosquito-borne flavivirus, is a major public health threat. The virus poses risk to 2.5 billion people worldwide and causes 50 to 100 million human infections each year. Neither a vaccine nor an antiviral therapy is currently available for prevention and treatment of DENV infection. Here, we report a previously undescribed adenosine analog, NITD008, that potently inhibits DENV both in vitro and in vivo. In addition to the 4 serotypes of DENV, NITD008 inhibits other flaviviruses, including West Nile virus, yellow fever virus, and Powassan virus. The compound also suppresses hepatitis C virus, but it does not inhibit nonflaviviruses, such as Western equine encephalitis virus and vesicular stomatitis virus. A triphosphate form of NITD008 directly inhibits the RNA-dependent RNA polymerase activity of DENV, indicating that the compound functions as a chain terminator during viral RNA synthesis. NITD008 has good in vivo pharmacokinetic properties and is biologically available through oral administration. Treatment of DENV-infected mice with NITD008 suppressed peak viremia, reduced cytokine elevation, and completely prevented the infected mice from death. No observed adverse effect level (NOAEL) was achieved when rats were orally dosed with NITD008 at 50 mg/kg daily for 1 week. However, NOAEL could not be accomplished when rats and dogs were dosed daily for 2 weeks. Nevertheless, our results have proved the concept that a nucleoside inhibitor could be developed for potential treatment of flavivirus infections.
Abstract. In this paper, we show that [3COP is present on endosomes and is required for the formation of vesicles which mediate transport from early to late endosomes. Both the association of 13COP to endosomal membranes as well as transport vesicle formation depend on the lumenal pH. We find that ~COP, but not ",/COP, is also associated to endosomes, and that this association is also lumenal pH dependent. Our data, thus, indicate that a subset of COPs is part of the mechanism regulating endosomal membrane transport, and that membrane association of these COPs is controlled by the acidic properties of early endosomes, presumably via a trans-membrane pH sensor.
We performed a focused siRNA screen in an A549 dengue type 2 New Guinea C subgenomic replicon cell line (Rluc-replicon) that contains a Renilla luciferase cassette. We found that siRNA mediated knock down of mevalonate diphospho decarboxylase (MVD) inhibited viral replication of the Rluc-replicon and DEN-2 NGC live virus replication in A549 cells. When the Rluc-replicon A459 cells were grown in delipidated media the replicon expression was suppressed and MVD knock down could further sensitize Renilla expression. Hymeglusin and zaragozic acid A could inhibit DEN-2 NGC live virus replication in K562 cells, while lovastatin could inhibit DEN-2 NGC live virus replication in human peripheral blood mononuclear cells. Renilla expression could be rescued in fluvastatin treated A549 Rluc-replicon cells after the addition of mevalonate, and partially restored with geranylgeranyl pyrophosphate, or farnesyl pyrophosphate. Our data suggest genetic and pharmacological modulation of cholesterol biosynthesis can regulate dengue virus replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.