This research developed an adaptive control system for injection molding process. The purpose of this control system is to adaptively maintain the consistency of product quality by minimize the mass variation of injection molded parts. The adaptive control system works with the information collected through two sensors installed in the machine only—the injection nozzle pressure sensor and the temperature sensor. In this research, preliminary experiments are purposed to find master pressure curve that relates to product quality. Viscosity index, peak pressure, and timing of the peak pressure are used to characterize the pressure curve. The correlation between product quality and parameters such as switchover position and injection speed were used to produce a training data for back propagation neural network (BPNN) to compute weight and bias which are applied on the adaptive control system. By using this system, the variation of part weight is maintained to be as low as 0.14%.
The injection-molding process is a non-linear process, and the product quality and long-term production stability are affected by several factors. To stabilize the product quality effected by these factors, this research establishes a standard process parameter setup procedure and an adaptive process control system based on the data collected by a nozzle pressure sensor and a tie-bar strain gauge to achieve this goal. In this research, process parameters such as the V/P switchover point, injection velocity, packing pressure, and clamping force are sequentially optimized based on the characteristics of the pressure profile. After the optimization process, this research defines the standard quality characteristics through the optimized process parameters and combines it with the adaptive process control system in order to achieve the purpose of automatic adjustment of the machine and maintain high-quality production. Finally, three different viscosity materials are used to verify the effectiveness of the optimization procedure and the adaptive process control system. With the system, the variation of product weight was reduced to 0.106%, 0.092%, and 0.079%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.