Species of the genus Sugiyamaella (Trichomonascaceae, Saccharomycetales), found in rotting wood in China, were investigated using morphology and the molecular phylogeny of a combined ITS and nrLSU dataset. Nine taxa were collected in China: two were new species (viz. Sugiyamaella chuxiongsp. nov. and S. yunanensissp. nov.) and seven were known species, S. americana, S. ayubii, S. novakii, S. paludigena, S. valenteae, S. valdiviana and S. xiaguanensis. The two new species are illustrated and their morphology and phylogenetic relationships with other Sugiyamaella species are discussed. Our results indicate a potentially great diversity of Sugiyamaella spp. inhabiting rotting wood in China just waiting to be discovered.
Three strains representing a novel yeast species, Sugiyamaella xiaguanensis f.a., sp. nov. (type strain NYNU 161041=CICC 33167=CBS 14696), were isolated from rotting wood samples collected in Henan and Yunnan Provinces, PR China. The novel species is able to assimilate cellobiose, salicin and d-xylose, which was typical of the species of the genus Sugiyamaella. Analysis of the D1/D2 domains of the large subunit rRNA gene and internal transcribed spacer regions of these strains showed that this species was related to Sugiyamaella lignohabitans and Sugiyamaella marionensis, its closest relatives. Su. xiaguanensis sp. nov. differed by 1.4 % nucleotide substitutions from Su. lignohabitans, and by 1.9 % nucleotide substitutions from Su. marionensis in the D1/D2 sequences. The ITS sequences of Su. xiaguanensis sp. nov. displayed more than 6.5 % nucleotide substitutions from the latter two species, showing that it is a genetically separate species.
Two strains of a D-xylose-fermenting yeast species were isolated from rotten wood samples collected from the Baotianman Nature Reserve in Henan Province, central China. These strains formed hat-shaped ascospores in conjugated and deliquescent asci. Multilocus phylogenetic analysis that included the nearly complete small subunit (SSU), the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit (LSU) rRNA genes, as well as RNA polymerase II largest subunit (RPB1) gene demonstrated that the two strains represent a novel yeast species closely related to Scheffersomyces segobiensis. A sequence comparison of xylose reductase (XYL1) gene, which was recently recommended for rapid identification of cryptic species in the Scheffersomyces clade, revealed a significant sequence divergence of 25 nucleotides between the novel strains and their closest relative S. segobiensis, supporting their classification as a distinct species. Furthermore, these new strains can be clearly distinguished from S. segobiensis by a number of morphological and physiological characteristics. Therefore, a novel yeast species, Scheffersomyces henanensis sp. nov., is proposed to accommodate these strains. The type strain is BY-41T ( = CICC 1974T = CBS 12475T).
The effect of pathogenic bacteria on a host and its symbiotic microbiota is vital and widespread in the biotic world. The soil-dwelling opportunistic bacterium Bacillus nematocida B16 uses a “Trojan horse” mechanism to kill Caenorhabditis elegans. The alterations in the intestinal microflora that occur after B16 infection remain unknown. Here, we analyzed the intestinal bacteria presented in normal and infected worms. The gut microbial community experienced a complex change after B16 inoculation, as determined through marked differences in species diversity, structure, distribution and composition between uninfected and infected worms. Regardless of the worm’s origin (i.e., from soil or rotten fruits), the diversity of the intestinal microbiome decreased after infection. Firmicutes increased sharply, whereas Proteobacteria, Actinobacteria, Cyanobacteria and Acidobacteria decreased to different degrees. Fusobacteria was only present 12 h post-infection. After 24 h of infection, 1228 and 1109 bacterial species were identified in the uninfected and infected groups, respectively. The shared species reached 21.97%. The infected group had a greater number of Bacillus species but a smaller number of Pediococcus, Halomonas, Escherichia and Shewanella species (P < 0.01). Therefore, this study provides the first evaluation of the alterations caused by pathogenic bacteria on symbiotic microbiota using C. elegans as the model species.
Two apiculate strains (NYNU 181072 and NYNU 181083) of a bipolar budding yeast species were isolated from rotting wood samples collected in Xishuangbanna Tropical Rainforest in Yunnan Province, southwest PR China. On the basis of phenotypic characteristics and the results of phylogenetic analysis of the D1/D2 domain of the large subunit (LSU) rRNA, internal transcribed spacer (ITS) region and the actin (ACT1) gene, the two strains were found to represent a single novel species of the genus Hanseniaspora, for which the name Hanseniaspora menglaensis f.a., sp. nov. (holotype CICC 33364T; MycoBank MB 847437) is proposed. In the phylogenetic tree, H. menglaensis sp. nov. showed a close relationship with Hanseniaspora lindneri, Hanseniaspora mollemarum, Hanseniaspora smithiae and Hanseniaspora valbyensis. H. menglaensis sp. nov. differed from H. lindneri, the most closely related known species, by 1.2 % substitutions in the D1/D2 domain, 2.5 % substitutions in the ITS region and 5.4 % substitutions in the ACT1 gene, respectively. Physiologically, H. menglaensis sp. nov. can also be distinguished from H. lindneri by its ability to assimilate d-gluconate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.