Thirteen polyphenolics were isolated from fresh pods of Caesalpinia pulcherrima using various methods of column chromatography. The structures of these polyphenolics were elucidated as gallic acid (1), methyl gallate (2), 6-O-galloyl-d-glucoside (3), methyl 6-O-galloyl-β-d-glucoside (4), methyl 3,6-di-O-galloyl-α-d-glucopyranoside (5), gentisic acid 5-O-α-d-(6′-O-galloyl)glucopyranoside (6), guaiacylglycerol 4-O-β-d-(6′-O-galloyl)glucopyranoside (7), 3-methoxy-4-hydroxyphenol 1-O-β-d-(6′-O-galloyl) glucopyranoside (8), (+)-gallocatechin (9), (+)-catechin (10), (+)-gallocatechin 3-O-gallate (11), myricetin 3-rhamnoside (12), and ampelopsin (13). All isolated compounds were tested for their antioxidant activities in the 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and peroxynitrite radicals scavenging assays. Among those compounds, 11, 12, and 2 exhibited the best DPPH-, hydroxyl-, and peroxynitrite radical-scavenging activities, respectively. Compound 7 is a new compound, and possesses better scavenging activities towards DPPH but has equivalent hydroxyl radical scavenging activity when compared to BHT. The paper is the first report on free radical scavenging properties of components of the fresh pods of Caesalpinia pulcherrima. The results obtained from the current study indicate that the free radical scavenging property of fresh pods of Caesalpinia pulcherrima may be one of the mechanisms by which this herbal medicine is effective in several free radical mediated diseases.
Cardiovascular disease is still the leading cause of death in Western countries. Epidemiological studies have shown that hypercholesterolemia is a major risk factor for coronary artery disease. Clinical trials of lipid lowering therapy with 3-hydroxy-3-methylglutaryl coenzyme A (HMG Co-A) reductase inhibitor have been shown to decrease coronary events and mortality. Flavonoids are polyphenolic natural antioxidants occurring in natural products such as traditional Chinese herbs, fruits and beverages such as tea and wine. The aim of this study was to evaluate the effects of crude extracts from traditional Chinese herbs on HMG Co-A reductase. The methods for analysis of specific inhibitors of mevalonate biosynthesis have been well-established by using Vero cells, a cell line obtained from kidneys of African green monkeys. Crude extracts from different traditional Chinese herbs were dissolved in 1% Dulbecco's modified Eagle's medium and incubated with Vero cells with or without the addition of 1 mM mevalonate or 5 mM sodium acetate for 24 hours in order to observe cell growth. Pravastatin, a specific HMG Co-A reductase inhibitor, was used as a positive control which inhibits Vero cells growth effectively and cell growth inhibition was reversible after 1 mM mevalonate. Among 100 traditional Chinese herbs used for the study, only two herbs: Curcuma zedoaria Roscoe and Poncirus trifoliata Raf. showed significant growth inhibition of Vero cells. This study shows that some crude extracts isolated from traditional medicinal herbs were effective HMG Co-A reductase inhibitors which might be developed into new hypocholesterolemic agents.
Abnormal serum urate levels are recognized as a critical factor in the progression of several chronic diseases. To evaluate the antihyperuricemic effect of Davallia formosana, the inhibitory activities of 15 isolated phytochemicals, including five novel compounds of 6,8-dihydroxychromone-7-C-β-d-glucopyranoside (1), 6,8,3′,4′-tetrahydroxyflavanone-7-C-β-d-glucopyranoside (2), 6,8,4′-trihydroxyflavanone-7-C-β-d-glucopyranoside (3), 8-(2-pyrrolidinone-5-yl)-catechin-3-O-β-d-allopyranoside (4), and epiphyllocoumarin-3-O-β-d-allopyranoside (5), were examined against xanthine oxidase (XOD) and in a potassium oxonate-(PTO-) induced acute hyperuricemic mice model. The results indicated that compounds 3 and 5 significantly inhibited XOD activity in vitro and reduced serum uric acid levels in vivo. This is the first report providing new insights into the antihyperuricemic activities of flavonoid glycosides which can possibly be developed into potential hypouricemic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.