[1] Changes in active layer thickness (ALT) over northern high-latitude permafrost regions have important impacts on the surface energy balance, hydrologic cycle, carbon exchange between the atmosphere and the land surface, plant growth, and ecosystems as a whole. This study examines the 20th century variations of ALT for the Ob, Yenisey, and Lena River basins. ALT is estimated from historical soil temperature measurements from 17 stations , Lena basin only), an annual thawing index based on both surface air temperature data and numerical modeling . The latter two provide spatial fields. Based on the thawing index, the long-term average ALT is about 1.87 m in the Ob, 1.67 in the Yenisey, and 1.69 m in the Lena basin. Over the past several decades, ALT over the three basins shows positive trends, but with different magnitudes. Based on the 17 stations, ALT increased about 0.32 m between 1956 and 1990 in the Lena. To the extent that results based on the soil temperatures represent ground ''truth,'' ALT obtained from both the thawing index and numerical modeling is underestimated. It is widely believed that ALT will increase with global warming. However, this hypothesis needs further refinement since ALT responds primarily to summer air temperature while observed warming has occurred mainly in winter and spring. It is also shown that ALT exhibits complex and inconsistent responses to variations in snow cover.Citation: Zhang, T., et al. (2005), Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin,
No abstract
[1] Thaw lakes are one of the most obvious manifestations of the hydrological system at work in the tundra regions of the Alaskan Arctic Coastal Plain, but the extent of the role of thaw lakes in Arctic land-atmosphere interactions and feedback has yet to be fully understood. This study uses a two-dimensional heat transfer model with phase change under a cylindrical coordinate system to simulate the long-term influence of shallow thaw lakes on the thermal regime of permafrost and talik development on the Alaskan Arctic Coastal Plain. On the basis of previous studies of permafrost and thaw lakes at Barrow, Alaska, a series of simulation cases was conducted using different combinations of long-term mean lake bottom temperature and lake depth. The simulated results indicate that shallow thaw lakes are a significant heat source to permafrost and talik. For a thaw lake with a long-term mean lake bottom temperature of greater than 0.0°C a talik forms under the thaw lake. The maximum talik thicknesses (vertical distance from the ground surface to the permafrost surface) are 28.0, 43.0, and 53.2 m 3000 years after the formation of a shallow thaw lake with long-term mean lake bottom temperatures of 1.0°, 2.0°, and 3.0°C, respectively. Talik development rate is very high in the first several years after a thaw lake formation and decreases gradually with time. No talik forms below a thaw lake with a long-term mean lake bottom temperature equal to or lower than 0.0°C, but the temperature of permafrost below the thaw lake increases with time. Three thousand years after the formation of a thaw lake with a long-term mean lake bottom temperature of greater than or equal to À2.0°C, ground temperature increases of more than 0.5°C occur as far as 300 m from the lake shore and as deep as about 400 m below the ground surface. It is concluded that variation of long-term mean lake bottom temperature has a significant influence on permafrost thermal regime and talik development. Continued monitoring for thaw lake bottom temperature and ground temperature under shallow thaw lakes is needed to further improve the simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.