The prognostic and health management (PHM) of lithium-ion batteries has received increasing attention in recent years. The remaining useful life (RUL) prediction and state of health (SOH) monitoring are two important parts in PHM of the lithium-ion battery. Nowadays, the development of signal processing technology and neural network technology introduces new data-driven methods to RUL prediction and SOH monitoring of the lithium-ion battery. This paper presents a neural-network-based method that combines long short-term memory (LSTM) network with particle swarm optimization and attention mechanism for RUL prediction and SOH monitoring of the lithium-ion battery. Before predicting RUL of the lithium-ion battery, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) is utilized for the raw data denoising, which can improve the accuracy of prediction. A real-life cycle dataset of lithium-ion batteries from NASA is used to evaluate the proposed method, and the experiment results show that when compared with traditional methods, the proposed method has higher accuracy. INDEX TERMS Lithium-ion battery, prognostic and health management (PHM), long short-term memory (LSTM), attention mechanism.
The bearing is a component of the support shaft that guides the rotational movement of the shaft, widely used in the mechanical industry and also called a mechanical joint. In bearing fault diagnosis, the accuracy much depends on the feature extraction, which always needs a lot of training samples and classification in the commonly used methods. Neural networks are good at latent feature extraction and fault classification, however, they have problems with instability and over-fitting, and more labeled samples must be trained. Switchable normalization and semi-supervised learning are introduced to solve the above obstacles in this paper, which proposes a novel bearing fault diagnosis method based on switchable normalization semi-supervised generative adversarial networks (SN-SSGAN) with 1-dimensional representation of vibration signals as input. Experimental results showed that the proposed method has a desirable 99.93% classification accuracy in the case of less labeled data from the public data set of West Reserve University, which is better than the state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.