Biodiesel is an environment-friendly and renewable fuel produced by transesterification of various feedstocks. Although the lipase-catalyzed biodiesel production has many advantages over the conventional alkali catalyzed process, its industrial applications have been limited by high-cost and low-stability of lipase enzymes. This review provides a general overview of the recent advances in lipase engineering, including both protein modification and production. Recent advances in biotechnology such as in protein engineering, recombinant methods and metabolic engineering have been employed but are yet to impact lipase engineering for cost-effective production of biodiesel. A summary of the current challenges and perspectives for potential solutions are also provided.
Compared
with traditional chemotherapeutics, vascular disruption
agents (VDAs) have the advantages of rapidly blocking the supply of
nutrients and starving tumors to death. Although the VDAs are effective
under certain scenarios, this treatment triggers angiogenesis in the
later stage of therapy that frequently leads to tumor recurrence and
treatment failure. Additionally, the nonspecific tumor targeting and
considerable side effects also impede the clinical applications of
VDAs. Here we develop a customized strategy that combines a VDA with
an anti-angiogenic drug (AAD) using mesoporous silica nanoparticles
(MSNs) coated with platelet membrane for the self-assembled tumor
targeting accumulation. The tailor-made nanoparticles accumulate in
tumor tissues through the targeted adhesion of platelet membrane surface
to damaged vessel sites, resulting in significant vascular disruption
and efficient anti-angiogenesis in animal models. This study demonstrates
the promising potential of combining VDA and AAD in a single nanoplatform
for tumor eradication.
BACKGROUND: Rhodosporidium toruloides can transform carbohydrates from lignocellulosic hydrolyzate into long-chain fatty acids that contribute to biodiesel production. However R. toruloides cannot survive in lignocellulosic hydrolyzate due to the inhibitory effects of the byproducts co-produced by hydrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.