ErbB3/HER3 is one of four members of the human epidermal growth factor receptor (EGFR/HER) or ErbB receptor tyrosine kinase family. ErbB3 binds neuregulins via its extracellular region and signals primarily by heterodimerizing with ErbB2/HER2/Neu. A recently appreciated role for ErbB3 in resistance of tumor cells to EGFR/ErbB2-targeted therapeutics has made it a focus of attention. However, efforts to inactivate ErbB3 therapeutically in parallel with other ErbB receptors are challenging because its intracellular kinase domain is thought to be an inactive pseudokinase that lacks several key conserved (and catalytically important) residuesincluding the catalytic base aspartate. We report here that, despite these sequence alterations, ErbB3 retains sufficient kinase activity to robustly trans-autophosphorylate its intracellular regionalthough it is substantially less active than EGFR and does not phosphorylate exogenous peptides. The ErbB3 kinase domain binds ATP with a K d of approximately 1.1 μM. We describe a crystal structure of ErbB3 kinase bound to an ATP analogue, which resembles the inactive EGFR and ErbB4 kinase domains (but with a shortened αC-helix). Whereas mutations that destabilize this configuration activate EGFR and ErbB4 (and promote EGFR-dependent lung cancers), a similar mutation conversely inactivates ErbB3. Using quantum mechanics/molecular mechanics simulations, we delineate a reaction pathway for ErbB3-catalyzed phosphoryl transfer that does not require the conserved catalytic base and can be catalyzed by the "inactive-like" configuration observed crystallographically. These findings suggest that ErbB3 kinase activity within receptor dimers may be crucial for signaling and could represent an important therapeutic target.dimerization | kinase inhibitor | catalytic mechanism | activation loop R eceptor tyrosine kinases (RTKs) from the EGF receptor (EGFR) or ErbB/HER family play important roles in animal development and disease (1) and are the targets of several important therapeutic agents used clinically to treat cancer. Each receptor contains a large extracellular ligand-binding region (targeted by therapeutic antibodies), a single transmembrane helix, and an intracellular tyrosine kinase domain (TKD) that is flanked by juxtamembrane and C-terminal regulatory regions and is targeted by specific small-molecule kinase inhibitors (1, 2). Ligand binding to the extracellular region promotes homo-or heterodimerization of ErbB receptors, leading to allosteric activation of their intracellular kinase domains through the formation of asymmetric dimers (3-5). Within an activated dimer, the C-terminal regulatory tail is trans-autophosphorylated on tyrosines and recruits downstream signaling molecules that contain phosphotyrosine-binding Src homology-2 (SH2) domains.ErbB3/HER3 is unique among the mammalian ErbB receptors in being generally considered as kinase-inactive (6). When first cloned (7,8), amino acid substitutions were noted at two particular sites that are conserved in other known kinases (9). ...
As with other groups of protein kinases, approximately 10% of the receptor tyrosine kinases (RTKs) in the human proteome contain intracellular pseudokinases that lack one or more conserved catalytically important residues. These include ErbB3, a member of the epidermal growth factor receptor (EGFR) family, and a series of unconventional Wnt receptors. We recently showed that, despite its reputation as a pseudokinase, the ErbB3 tyrosine kinase domain (TKD) does retain significant – albeit weak – kinase activity. This led us to suggest that a subgroup of RTKs may be able to signal even with very inefficient kinases. Recent work suggests that this is not the case, however. Other pseudokinase RTKs have not revealed significant kinase activity, and mutations that impair ErbB3’s weak kinase activity have not so far been found to exhibit signaling defects. These findings therefore point to models in which the TKDs of pseudokinase RTKs participate in receptor signaling by allosterically regulating associated kinases (such as ErbB3 regulation of ErbB2) and/or function as regulated ‘scaffolds’ for other intermolecular interactions central to signal propagation. Further structural and functional studies – particularly of the pseudokinase RTKs involved in Wnt signaling – are required to shed new light on these intriguing signaling mechanisms.
Members of the epidermal growth factor receptor (EGFR) or ErbB/HER family and their activating ligands are essential regulators of diverse developmental processes. Inappropriate activation of these receptors is a key feature of many human cancers, and its reversal is an important clinical goal. A natural secreted antagonist of EGFR signalling, called Argos, was identified in Drosophila. We showed previously that Argos functions by directly binding (and sequestering) growth factor ligands that activate EGFR. Here we describe the 1.6-A resolution crystal structure of Argos bound to an EGFR ligand. Contrary to expectations, Argos contains no EGF-like domain. Instead, a trio of closely related domains (resembling a three-finger toxin fold) form a clamp-like structure around the bound EGF ligand. Although structurally unrelated to the receptor, Argos mimics EGFR by using a bipartite binding surface to entrap EGF. The individual Argos domains share unexpected structural similarities with the extracellular ligand-binding regions of transforming growth factor-beta family receptors. The three-domain clamp of Argos also resembles the urokinase-type plasminogen activator (uPA) receptor, which uses a similar mechanism to engulf the EGF-like module of uPA. Our results indicate that undiscovered mammalian counterparts of Argos may exist among other poorly characterized structural homologues. In addition, the structures presented here define requirements for the design of artificial EGF-sequestering proteins that would be valuable anti-cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.