In the paper industry, numerous studies have explored means of optimizing order allocation and cutting trim loss. However, enterprises may not adopt the resulting solutions because some widths of the inventory exceed or are less than those required for acceptable scheduling. To ensure that the results better suit the actual requirements, we present a new decision model based on the adjustment of scheduling and limitation of inventory quantity to differentiate trim loss and inventory distribution data. Differential analysis is used to reduce data filtering and the information is valuable for decision making. A numerical example is presented to illustrate the applicability of the proposed method. The results show that our proposed method outperforms the manual method regarding scheduling quantity and trim loss.
We consider a one-dimensional cutting stock problem (CSP) in which the stock widths are not used to fulfill the order but kept for use in the future for the industrial-use paper production. We present a new model based on the flexible stock allocation and trim loss control to determine the production quantity. We evaluate our approach using a real data and show that we are able to solve industrial-size problems, while also addressing common cutting considerations such as aggregation of orders, multiple stock widths, and cutting different patterns on the same machine. In addition, we compare our model with others, including trim loss minimization problem (TLMP) and cutting stock problem (CSP). The results show that the proposed model outperforms the other two models regarding total flexibility and trim loss ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.