There is currently no reliable and easily applicable diagnostic marker for Parkinson’s disease (PD). The aims of the present study were to compare the expression profiles of the microRNA29 family (miR-29s) in blood serum from patients with PD with healthy controls and to clarify whether the expression of miR-29s is correlated with disease severity, duration or L-dopa therapy and whether expression depends on the gender and age of patients. The levels of blood serum miR-29s in 80 patients with PD and 80 unaffected controls were assessed by reverse transcription-quantitative real-time PCR. The PCR products were confirmed by cloning and sequencing. Additionally, the expression of miR-7 in the blood serum from PD patients and control subjects was assessed. Serum miR-29 levels were significantly downregulated in PD patients compared to healthy controls. The serum miR-29 levels in female PD patients were markedly higher than in male PD patients. The expression of serum miR-29a and miR-29c expression tended to decrease with disease severity. Moreover, we found that serum miR-7 levels did not differ between PD patients and control subjects. Therefore, the reduction of serum miR-29 levels, particularly miR-29a and miR-29c, warrants further investigation of its potential serving as biomarkers for PD.
The effects of carbon nanotubes (CNT) with different surface groups on the luminescence properties of mercaptoacetic acid-capped CdSe quantum dots (QD) are reported. Carboxyl-, hydroxyl-, and amine-modified CNTs are used to interact with water-soluble luminescent mercaptoacetic acid-capped CdSe QDs. TEM and ζ-potential analysis results show that CNT and QDs can be assembled into complex nanostructure by electrostatic interaction. The photoluminescence (PL) quenching of QDs caused by CNTs can be described by a Stern-Volmer-type equation as well as by a double-logarithmic equation. Significant differences in the values of binding constants K SV and K b were found in these experiments. The binding constant for amineterminated CNT is much higher compared to that of carboxyl-and hydroxyl-terminated CNTs. Dynamic quenching and photoluminescence resonance energy transfer between QDs and CNTs should be responsible for the quenching of photoluminescence emissions of QDs caused by CNTs with different groups. The strategy shown in this paper may be useful for creating a novel methodology for investigating intermolecular interaction, and the quenching phenomena may be used as selective molecular probes and developed as fluorescence sensors.
A BS TRACT: Background: 18 F-APN-1607 is a novel tau PET tracer characterized by high binding affinity for 3-and 4-repeat tau deposits. Whether 18 F-APN-1607 PET imaging is clinically useful in PSP remains unclear. Objectives: The objective of this study was to investigate the clinical utility of 18 F-APN-1607 PET in the diagnosis, differential diagnosis, and assessment of disease severity in patients with PSP. Methods: We enrolled 3 groups consisting of patients with PSP (n = 20), patients with α-synucleinopathies (MSA with predominant parkinsonism, n = 7; PD, n = 10), and ageand sex-matched healthy controls (n = 13). The binding patterns of 18 F-APN-1607 in PET/CT imaging were investigated. Regional standardized uptake ratios were compared across groups and examined in relation to their utility in the differential diagnosis of PSP versus α-synucleinopathies. Finally, the relationships between clinical severity scores and 18 F-APN-1607 uptake were investigated after adjustment for age, sex, and disease duration.Results: Compared with healthy controls, patients with PSP showed increased 18 F-APN-1607 binding in several subcortical regions, including the striatum, putamen, globus pallidus, thalamus, subthalamic nucleus, midbrain, tegmentum, substantia nigra, pontine base, red nucleus, raphe nuclei, and locus coeruleus. We identified specific regions that were capable of distinguishing PSP from α-synucleinopathies. The severity of PSP was positively correlated with the amount of 18 F-APN-1607 uptake in the subthalamic nucleus, midbrain, substantia nigra, red nucleus, pontine base, and raphe nuclei. Conclusions: 18 F-APN-1607 PET imaging holds promise for the diagnosis, differential diagnosis, and assessment of disease severity in patients with PSP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.