Due to the façade visibility, intuitive expression, and multi-view redundancy, oblique photogrammetry can provide optional data for large-scale urban LoD-2 reconstruction. However, the inherent noise in oblique photogrammetric point cloud resulting from the image-dense matching limits further model reconstruction applications. Thus, this paper proposes a novel method for the efficient reconstruction of LoD-2 building models guided by façade structures from an oblique photogrammetric point cloud. First, a building planar layout is constructed combined with footprint data and the vertical planes of the building based on spatial consistency constraints. The cells in the planar layout represent roof structures with a distinct altitude difference. Then, we introduce regularity constraints and a binary integer programming model to abstract the façade with the best-fitting monotonic regularized profiles. Combined with the planar layout and regularized profiles, a 2D building topology is constructed. Finally, the vertices of building roof facets can be derived from the 2D building topology, thus generating a LoD-2 building model. Experimental results using real datasets indicate that the proposed method can generate reliable reconstruction results compared with two state-of-the-art methods.
Light Detection and Ranging (LiDAR) points and high-resolution RGB image-derived points have been successfully used to extract tree structural parameters. However, the differences in extracting individual tree structural parameters among different tree species have not been systematically studied. In this study, LiDAR data and images were collected using unmanned aerial vehicles (UAVs) to explore the differences in digital elevation model (DEM) and digital surface models (DSM) generation and tree structural parameter extraction for different tree species. It was found that the DEMs generated based on both forms of data, LiDAR and image, exhibited high correlations with the field-measured elevation, with an R2 of 0.97 and 0.95, and an RMSE of 0.24 and 0.28 m, respectively. In addition, the differences between the DSMs are small in non-vegetation areas, whereas the differences are relatively large in vegetation areas. The extraction results of individual tree crown width and height based on two kinds of data are similar when all tree species are considered. However, for different tree species, the Cinnamomum camphora exhibits the greatest accuracy in terms of crown width extraction, with an R2 of 0.94 and 0.90, and an RMSE of 0.77 and 0.70 m for LiDAR and image points, respectively. In comparison, for tree height extraction, the Magnolia grandiflora exhibits the highest accuracy, with an R2 of 0.89 and 0.90, and an RMSE of 0.57 and 0.55 m for LiDAR and image points, respectively. The results indicate that both LiDAR and image points can generate an accurate DEM and DSM. The differences in the DEMs and DSMs between the two data types are relatively large in vegetation areas, while they are small in non-vegetation areas. There are significant differences in the extraction results of tree height and crown width between the two data sets among different tree species. The results will provide technical guidance for low-cost forest resource investigation and monitoring.
Shape segmentation in urban environments forms the foundation for tasks such as classification and reconstruction. Most artificial buildings with complex structures are composed of multiple simple geometric primitives. Based on this assumption, this paper proposes a divisive hierarchical clustering algorithm that uses shape classification and outliers reassignment to segment LiDAR point clouds in order to effectively identify the various shapes of structures that make up buildings. The proposed method adopts a coarse-to-fine strategy. Firstly, based on the geometric properties of different primitives in a Gaussian sphere space, coarse extraction is performed using Gaussian mapping and the DBSCAN algorithm to identify the primary structure of various shapes. Then, the error functions are constructed after parameterizing the recognized shapes. Finally, a minimum energy loss function is built by combining the error functions and binary integer programming (BIP) to redistribute the outlier points. Thereby, the accurate extraction of geometric primitives is achieved. Experimental evaluations on real point cloud datasets show that the indicators of precision, accuracy, and F1 score of our method are 0.98, 0.95, and 0.96 (point assignment) and 0.97, 0.95, and 0.95 (shape recognition), respectively. Compared with other state-of-the-art methods, the proposed method can efficiently segment planar and non-planar structures with higher quality from building point clouds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.