The purpose of this paper is to propose a new approach to interactive multi-attribute group decision making with triangular Atanassov's intuitionistic fuzzy numbers (TAIFNs). The contribution of this study is fivefold: (1) Minkowski distance between TAIFNs is firstly defined; (2) We define the possibility attitudinal expected values of TAIFNs and thereby present a novel risk attitudinal ranking method of TAIFNs which can sufficiently consider the risk attitude of decision maker; (3) The weighted average operator (TAIFWA) and generalized ordered weighted average (TAIFGWA) operator of TAIFNs are defined as well as the hybrid ordered weighted average (TAIFHOWA) operator; (4) To study the interaction between attributes, we further develop the generalized Choquet (TAIF-GC) integral operator and generalized hybrid Choquet (TAIF-GHC) integral operator of TAIFNs. Their desirable properties are also discussed; (5) The individual overall value of alternative is obtained by TAIF-GC operator and the collective one is derived through TAIFWA operator. Fuzzy measures of attribute subsets and expert weights are objectively derived through constructing multi-objective optimization model which is transformed into the goal programming model to solve. The system analyst selection example verifies effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.