Pythagorean fuzzy set (PFS) is a powerful tool to deal with the imprecision and vagueness. Many aggregation operators have been proposed by many researchers based on PFSs. But the existing methods are under the hypothesis that the decision‐makers (DMs) and the attributes are at the same priority level. However, in real group decision‐making problems, the attribute and DMs may have different priority level. Therefore, in this paper, we introduce multiattribute group decision‐making (MAGDM) based on PFSs where there exists a prioritization relationship over the attributes and DMs. First we develop Pythagorean fuzzy Einstein prioritized weighted average operator and Pythagorean fuzzy Einstein prioritized weighted geometric operator. We study some of its desirable properties such as idempotency, boundary, and monotonicity in detail. Moreover we propose a MAGDM approach based on the developed operators under Pythagorean fuzzy environment. Finally, an illustrative example is provided to illustrate the practicality of the proposed approach.