Spherical fuzzy sets (SFSs) are a new extension of Cuong's picture fuzzy sets (PFSs). In SFSs, membership degrees satisfy the condition ≤ P x I x 0 ( ) + ( ) + 2 2
Significant emergency measures should be taken until an emergency event occurs. It is understood that the emergency is characterized by limited time and information, harmfulness and uncertainty, and decision‐makers are always critically bound by uncertainty and risk. This paper introduces many novel approaches to addressing the emergency situation of COVID‐19 under spherical fuzzy environment. Fundamentally, the paper includes six main sections to achieve appropriate and accurate measures to address the situation of emergency decision‐making. As the spherical fuzzy set (FS) is a generalized framework of fuzzy structure to handle more uncertainty and ambiguity in decision‐making problems (DMPs). First, we discuss basic algebraic operational laws (AOLs) under spherical FS. In addition, elaborate on the deficiency of existing AOLs and present three cases to address the validity of the proposed novel AOLs under spherical fuzzy settings. Second, we present a list of Einstein aggregation operators (AgOp) based on the Einstein norm to aggregate uncertain information in DMPs. Thirdly, we are introducing two techniques to demonstrate the unknown weight of the criteria. Fourthly, we develop extended TOPSIS and Gray relational analysis approaches based on AgOp with unknown weight information of the criteria. In fifth, we design three algorithms to address the uncertainty and ambiguity information in emergency DMPs. Finally, the numerical case study of the novel carnivorous (COVID‐19) situation is provided as an application for emergency decision‐making based on the proposed three algorithms. Results explore the effectiveness of our proposed methodologies and provide accurate emergency measures to address the global uncertainty of COVID‐19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.