Mammalian X-linked gene expression is highly regulated as female cells contain two and male one X chromosome (X). To adjust the X gene dosage between genders, female mouse preimplantation embryos undergo an imprinted form of X chromosome inactivation (iXCI) that requires both Rlim (also known as Rnf12) and the long non-coding RNA Xist. Moreover, it is thought that gene expression from the single active X is upregulated to correct for bi-allelic autosomal (A) gene expression. We have combined mouse genetics with RNA-seq on single mouse embryos to investigate functions of Rlim on the temporal regulation of iXCI and Xist. Our results reveal crucial roles of Rlim for the maintenance of high Xist RNA levels, Xist clouds and X-silencing in female embryos at blastocyst stages, while initial Xist expression appears Rlim-independent. We find further that X/A upregulation is initiated in early male and female preimplantation embryos.DOI: http://dx.doi.org/10.7554/eLife.19127.001
Summary Although histone-modifying enzymes are generally assumed to function in a manner dependent on their enzymatic activities, this assumption remains untested for many factors. Here we show the Tip60 (Kat5) lysine acetyltransferase (KAT), which is essential for embryonic stem cell (ESC) self-renewal and pre-implantation development, performs these functions independently of its KAT activity. Unlike ESCs depleted of Tip60, KAT–deficient ESCs exhibited minimal alterations in gene expression, chromatin accessibility at Tip60 binding sites, and self-renewal, thus demonstrating a critical KAT–independent role of Tip60 in ESC maintenance. In contrast, KAT–deficient ESCs exhibited impaired differentiation into mesoderm and endoderm, demonstrating a KAT–dependent function in differentiation. Consistent with this phenotype, KAT–deficient mouse embryos exhibited post-implantation developmental defects. These findings establish separable KAT–dependent and KAT–independent functions of Tip60 in ESCs and during differentiation, revealing a complex repertoire of regulatory functions for this essential chromatin remodeling complex.
RLIM/Rnf12 is an E3 ubiquitin ligase that has originally been identified as a transcriptional cofactor associated with LIM domain transcription factors. Indeed, this protein modulates transcriptional activities and multiprotein complexes recruited by several classes of transcription factors thereby enhancing or repressing transcription. Around 10 years ago, RLIM/Rnf12 has been identified as a major regulator for the process of X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female mice and ESCs. However, the precise roles of RLIM during XCI have been controversial. Here, we discuss the cellular and developmental functions of RLIM as an E3 ubiquitin ligase and its roles during XCI in conjunction with its target protein Rex1.
Mutant mRNA and protein contribute to the clinical manifestation of many repeat-associated neurological disorders, with the presence of nuclear RNA clusters being a common pathological feature. Yet, investigations into Huntington's disease – caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene – have primarily focused on toxic protein gain-of-function as the primary disease-causing feature. To date, mutant HTT mRNA has not been identified as an in vivo hallmark of Huntington’s disease. Here, we report that, in two Huntington’s disease mouse models (YAC128 and BACHD-97Q-ΔN17), mutant HTT mRNA is retained in the nucleus. Widespread formation of large mRNA clusters (∼0.6 to 5 µm3) occurred in 50-75% of striatal and cortical neurons. Cluster formation was independent of age and driven by expanded repeats. Clusters associate with chromosomal transcriptional sites and quantitatively co-localize with the aberrantly-processed N-terminal exon 1-intron 1 mRNA isoform, HTT1a. HTT1a mRNA clusters are observed in a subset of neurons from human Huntington’s disease post-mortem brain and are likely caused by somatic expansion of repeats. In YAC128 mice, clusters, but not individual HTT mRNA, are resistant to antisense oligonucleotide treatment. Our findings identify mutant HTT/HTT1a mRNA clustering as an early, robust molecular signature of Huntington’s disease, providing in vivo evidence that Huntington’s disease is a repeat expansion disease with mRNA involvement.
Antisense oligonucleotides (ASOs) are emerging as a promising class of therapeutics for neurological diseases. When injected directly into the cerebrospinal fluid, ASOs distribute broadly across brain regions and exert long-lasting therapeutic effects. However, many phosphorothioate (PS)-modified gapmer ASOs show transient motor phenotypes when injected into the cerebrospinal fluid, ranging from reduced motor activity to ataxia or acute seizure-like phenotypes. The effect of sugar and phosphate modifications on these phenotypes has not previously been systematically studied. Using a behavioral scoring assay customized to reflect the timing and nature of these effects, we show that both sugar and phosphate modifications influence acute motor phenotypes. Among sugar analogues, PS-DNA induces the strongest motor phenotype while 2'-substituted RNA modifications improve the tolerability of PS-ASOs. This helps explain why gapmer ASOs have been more challenging to develop clinically relative to steric blocker ASOs, which have a reduced tendency to induce these effects. Reducing the PS content of gapmer ASOs, which contain a stretch of PS-DNA, improves their toxicity profile, but in some cases also reduces their efficacy or duration of effect. Reducing PS content improved the acute tolerability of ASOs in both mice and sheep. We show that this acute toxicity is not mediated by the major nucleic acid sensing innate immune pathways. Formulating ASOs with calcium ions before injecting into the CNS further improved their tolerability, but through a mechanism at least partially distinct from the reduction of PS content. Overall, our work identifies and quantifies an understudied aspect of oligonucleotide toxicology in the CNS, explores its mechanism, and presents platform-level medicinal chemistry approaches that improve tolerability of this class of compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.