Towards the development of in vivo-mimicking tumor model for extensive study of tumorigenesis and establishment of personalized therapy, patient-derived primary tumor cells were employed in this work for three-dimensional (3D) bioprinting. Intrahepatic cholangiocarcinoma cells isolated from patient were bioprinted using a composite hydrogel system of gelatin-alginate-MatrigelTM into pre-designed grid architecture. ICC cells were observed to process a colony forming ability with high survival rate and active proliferation. Expression levels of tumor markers, cancer stem cell markers, matrix metalloproteinase protein, index of tumor fibrosis, index of liver function, and epithelial-mesenchymal transition regulatory proteins confirmed the development of the invasive and metastatic phenotype of the intrahepatic cholangiocarcinoma cells in the 3D printed tumor microenvironment. Similar results were obtained in anti-cancer drug resistance of the intrahepatic cholangiocarcinoma cells in the 3D bioprinted construct that demonstrated stem-like properties, which suggested the promising potential of current 3D printed tumor model in the development of personalized therapy, especially for discovery of more conducive targeted drugs.
The existing in vitro models for antitumor drug screening have great limitations. Many compounds that inhibit 2D cultured cells do not exhibit the same pharmacological effects in vivo, thereby wasting human and material resources as well as time during drug development. Therefore, developing new models is critical. The 3D bioprinting technology has greater advantages in constructing human tissue compared with sandwich culture and organoid construction. Here, we used 3D bioprinting technology to construct a 3D model with HepG2 cells (3DP-HepG2). The biological activities of the model were evaluated by immunofluorescence, real-time quantitative PCR, and transcriptome sequencing. Compared with the traditional 2D cultured tumor cells (2D-HepG2), 3DP-HepG2 showed significantly improved expression of tumorrelated genes, including ALB, AFP, CD133, IL-8, EpCAM, CD24, and β-TGF genes. Transcriptome sequencing analysis revealed large differences in gene expression between 3DP-HepG2 and 2D-HepG2, especially genes related to hepatocyte function and tumor. We also compared the effects of antitumor drugs in 3DP-HepG2 and 2D-HepG2, and found that the large differences in drug resistance genes between the models may cause differences in the drugs' pharmacodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.