To identify the known and novel microRNAs (miRNAs) and their targets that are involved in the response and adaptation of maize (Zea mays) to salt stress, miRNAs and their targets were identified by a combined analysis of the deep sequencing of small RNAs (sRNA) and degradome libraries. The identities were confirmed by a quantitative expression analysis with over 100 million raw reads of sRNA and degradome sequences. A total of 1040 previously known miRNAs were identified from four maize libraries, with 762 and 726 miRNAs derived from leaves and roots, respectively, and 448 miRNAs that were common between the leaves and roots. A total of 37 potential new miRNAs were selected based on the same criteria in response to salt stress. In addition to known miR167 and miR164 species, novel putative miR167 and miR164 species were also identified. Deep sequencing of miRNAs and the degradome [with quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses of their targets] showed that more than one species of novel miRNA may play key roles in the response to salinity in maize. Furthermore, the interaction between miRNAs and their targets may play various roles in different parts of maize in response to salinity.
Manchurian walnut (Juglans mandshurica Maxim.) is a synonym of J. cathayensis, a diploid, vulnerable, temperate deciduous tree valued for its wood and nut. It is also valued as a rootstock for Juglans regia because of its reported tolerance of lesion nematode.Reference genomes are available for several Juglans species, our goal was to produce a de novo, chromosome-level assembly of the J. mandshurica genome. Here, we reported an improved assembly of J. mandshurica with a contig N50 size of 6.49 Mb and a scaffold N50 size of 36.1 Mb. The total genome size was 548 Mb encoding 29,032 protein coding genes which were annotated. The collinearity analysis showed that J. mandshurica and J. regia originated from a common ancestor, with both species undergoing two WGD events. A genomic comparison showed that J. mandshurica was missing 1657 genes found in J. regia, and J. mandshurica includes 2827 genes not found in of the J. regia genome. The J. mandshurica contained 1440 unique paralogues that were highly enriched for flavonoid biosynthesis, phenylpropanoid biosynthesis, and plant-pathogen interaction. Four gene families related to disease resistance notable contraction (rapidly evolving; LEA, WAK, PPR, and PR) in J. mandshurica compared to eight species. JmaPR10 and JmaPR8 contained three orthologous gene pairs with J. regia that were highly expressed in root bark. JmaPR10 is a strong candidate gene for lesion nematodes resistance in J. mandshurica. The J. mandshurica genome should be a useful resource for study of the evolution, breeding, and genetic variation in walnuts (Juglans).
Juglans regia L. is an economically important crop cultivated worldwide for its high quality and quantity of wood and nuts. Phenylalanine ammonia-lyase (PAL) is the first enzyme in the phenylpropanoid pathway that plays a critical role in plant growth, development, and adaptation, but there have been few reports of the PAL gene family in common walnut. Here, we report a genome-wide study of J. regia
PAL genes and analyze their phylogeny, duplication, microRNA, and transcriptional expression. A total of 12 PAL genes were identified in the common walnut and clustered into two subfamilies based on phylogenetic analysis. These common walnut PALs are distributed on eight different pseudo-chromosomes. Seven of the 12 PALs (JrPAL2-3, JrPAL4-2, JrPAL2-1, JrPAL4-1, JrPAL8, JrPAL9, and JrPAL6) were specific found in J. regia, and JrPAL3, JrPAL5, JrPAL1-2, JrPAL7, and JrPAL2-2 were found to be closely associated with the woody plant Populus trichocarpa. Additionally, the expression patterns of JrPAL3, JrPAL7, JrPAL9, and JrPAL2-1 showed that they had high expression in female and male flowers. The miRNA ath-miR830-5p regulates two genes, JrPAL5 and JrPAL1, such that they have low expression in the male and female flowers of the common walnut. Our research provides useful information for further research into the function of PAL genes in common walnut and Juglans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.